

February 11, 2010

MC-124
Mr. Gale Baker, P.G.
MSW Permits Section
Office of Waste Management, Permits Division
Texas Commission on Environmental Quality
P. O. Box 13087
Austin, TX 78711-3087

Re: Response to First Technical Notice of Deficiency (NOD) for the Groundwater Monitoring System Design Angelina County Waste Management Center- Angelina County Municipal Solid Waste - Permit No. 2105A Tracking No. 11995083; RN101947323 / CN600833511

Dear Mr. Baker:

The following information is provided, on behalf of the Angelina County Waste Management Center, as a revision to the previously submitted request for modification to the approved groundwater monitoring system design for the above-referenced facility. In addition, this correspondence addresses the comments provided in the above-referenced TCEQ correspondence. For your convenience, each comment from the TCEQ correspondence is presented below followed by the response.

TCEQ Comment:

 The permit modification application contains revisions to Part III, Attachment 5, Groundwater Characterization Report. However, the permit modification did not include a complete submittal of Attachment 5. Some sections, exhibits, and appendices were omitted. Please submit a complete replacement for Attachment 5.

Response:

A complete replacement for Attachment 5 (including pages unchanged for purposes of this permit modification) is included with this submittal. February 2010 revision dates are included on pages modified for this permit modification.

TCEQ Comment:

2. Attachment 5 will need to include an updated groundwater monitoring design certification by a qualified groundwater scientist pursuant to §330.403(e).

Response:

A new groundwater monitoring design certification to replace the certification included with the March 2008 submittal is included with this NOD response.

Municipal Solid Waste - Permit No. 2105A Tracking No. 11995083; RN101947323 / CN600833511

TCEQ Comment:

The permit modification did not include sufficient documentation that would justify the plugging and abandonment of monitor wells MW-1B and MW-15B. Additional documentation needs to be provided in Attachment 5 such as a discussion about the historic groundwater analyses results for these wells, cross-sections showing the "deep" water-bearing zone along with the uppermost aquifer, groundwater contour maps showing the gradient of the "deep" water-bearing zone, and the basis for these monitoring wells as currently permitted. It is noted that monitor well MW-13B is currently in an assessment of corrective measures pursuant to 30 TAC §330.411. Does MW-13B monitor the same "deep" water-bearing zone as MW-1B and MW-15B?

Response:

The use of the term "deep water-bearing zone" was intended to describe the deeper portion of the uppermost groundwater bearing zone. As described in the Initial Groundwater Characterization Report (December 1, 1995), the uppermost groundwater bearing zone is made up of a number of hydraulically connected channel sands incised by other channel sands. Interbedded silty sand and clay units flanking the channel sands lessen hydraulic connectivity between water bearing units in both vertical and lateral directions. Although the interbedded silty sand and clay units limit flow between the sand bodies, distinct evidence of interconnectivity remains. Water levels in monitor wells installed in close proximity, such as wells MW-1B and MW-18, demonstrate the interconnectivity of vertically separated channel sands. Comparisons of historical water level data for monitor wells MW-1B and MW-18 show pronounced correlation between changes in water levels during successive events since 1999. Additionally, parallels with respect to analytical data further indicate the wells monitor the same zone. As the wells monitor the same groundwater bearing unit and are located approximately 11 feet apart, we propose to plug and abandon monitor well MW-1A and maintain monitor MW-18. Data, calculations, and resulting graphical representations used to show the interconnectivity of monitor wells MW-1B and MW-18 are included as Exhibit 8.8 of Attachment 5.

Similarly, water levels in monitor wells MW-15A and 15B demonstrate considerable interconnectivity based on water level change correlation. However, related historical analytical data show less correlation. Therefore, the request to plug and abandon MW-15B has been removed from this permit modification request.

Monitor well MW-13B was originally paired with MW-13A. Monitor well MW-13A was plugged and abandoned as it was consistently dry. Therefore, monitor well MW-13B remains as a monitoring point for the uppermost water bearing zone as described in the *Initial Groundwater Characterization Report* (December 1, 1995).

TCEQ Comment:

4. The permit modification proposed the following in Section 5 of Attachment 5:

Tracking No. 11995083; RN101947323 / CN600833511

"Installation of monitor wells MW-21, MW-22, and MW-24 and plugging of wells MW-1B, MW-2, MW-4, MW-7, MW-15B and MW-20 will occur following approval of the revised groundwater monitoring system design... Monitoring of wells MW-6, MW-10, MW-11, MW-25, and MW-26 will commence prior to placement of the first waste in Tract 2."

Please revise Attachment 5 to indicate that monitor well MW-20 will not be plugged and abandoned until the commencement of groundwater monitoring for Tract 2. Monitor well MW-20 currently serves as a downgradient well along the northeast side of Tract 1.

Response:

The groundwater monitoring system has been redesigned to address the spacing requirements between MW-5 and MW-6. The resultant design includes the installation of MW-25 as a replacement well for MW-5 and initiation of monitoring for MW-6. Groundwater contour maps constructed for the facility indicate that proposed monitor wells MW-24 and MW-25 are downgradient of both MW-20 and the Tract 1 disposal area. As the point of compliance along the northernmost permit boundary includes monitor wells MW-24, MW-25 (downgradient of Tract 1) and MW-6 (downgradient of Tract 2), monitor well MW-20 is considered an unnecessary internal well. Therefore, we respectfully maintain the request to plug monitor well MW-20 in accordance with the proposed monitoring system installation schedule.

TCEQ Comment:

5. The permit modification proposed a spacing of 629 feet between monitor wells MW-5 and MW-6. The permit modification did not include a site-specific technical demonstration to support a spacing greater than 600 feet pursuant to 30 TAC §330.403(a)(2). Please revise Attachment 5 to comply with the monitor well spacing requirements in the above rule or submit a site-specific technical demonstration. This technical demonstration should address potential contamination plume widths and may include multi-dimensional groundwater flow modeling. The technical demonstration should show that monitor wells are spaced so that plumes cannot pass wells undetected. Also, see comment #6 below regarding the monitor well spacing of MW-18 and MW-15A.

Response:

The groundwater monitoring system has been revised to ensure well spacing does not exceed 600 feet in accordance with 30 TAC §330.403(a)(2). Exhibit 8.3 has been revised to reflect the changes to the groundwater monitoring system design.

TCEQ Comment:

6. Some of the monitor well spacing as labeled on the proposed revision of Exhibit 8.3 (Site Map of ACWMC Showing Location of Monitor Wells) in Attachment 5 were not measured around the corners along the point of compliance (POC). For example, the spacing between MW-18 and MW-15A is labeled as 491 feet and the distance

Tracking No. 11995083; RN101947323 / CN600833511

was measured "as the crow flies." The spacing as measured around the corner along the POC on revised Exhibit 8.3, is about 440 feet from MW-18 to the southwest corner, and then about 200 feet to MW-15A, for a total spacing of about 640 feet. Please revise Exhibit 8.3 to correct the spacing label for these two monitor wells, along with the spacing labels for MW-12A/MW-13B and MW-23/MW-24. Please note that comment #5 above also applies to the monitor well spacing for MW-18 and MW-15A.

Response:

The groundwater monitoring system has been revised to ensure point of compliance well spacing does not exceed 600 feet in accordance with 30 TAC §330.403(a)(2). The revised spacing are measured along the point of compliance and equidistant from waste based on existing well spacing from waste. Exhibit 8.3 has been revised to reflect the changes to the groundwater monitoring system design.

TCEQ Comment:

7. Based upon current Exhibit 8.3 in Attachment 5, it appears that the POC proposed in the permit modification may have been changed. The current or permitted POC for Permit 2105A needs to be clarified with respect to the POC proposed in the revisions to Attachment 5.

Response:

The current POC is not clearly defined in the existing permit documentation. However, previous permit drawings and the associated monitoring system design indicate the current point of compliance extends along the permit boundary from existing monitor well MW-7 to the west and then south to monitor wells MW-15B and 15A. Additionally, the current POC also extends along the permit boundary between monitor wells MW-12A and MW-13B. Exhibit 8.3 of Attachment 5 has been revised to show an extended point of compliance that now includes proposed monitor wells MW-27 and MW-28.

TCEQ Comment:

8. The permit modification proposed that the POC along the northeast side of Tract 2 will end at monitor well MW-26. The permit modification did not include sufficient data, such as groundwater contour maps, to justify ending the POC at this location. At a minimum, the POC should be extended southeast of MW-26 to the permit boundary (i.e., southeast corner of Tract 2) and a new POC monitor well proposed at this location. Also, see comment #7 above regarding the current or permitted POC.

Response:

To address this comment, monitor well MW-28 has been added to the proposed monitoring system. Exhibit 8.3 includes this newly proposed well.

GEOLOGY

Tracking No. 11995083; RN101947323 / CN600833511

TCEQ Comment:

9. Please include a table in Attachment 5 that shows the as-built design details for all current monitoring wells and the proposed design details for monitor wells MW-21, MW-22, MW-23, MW-24, MW-25, and MW-26 (i.e., surface elevation, total depth, screen elevations, etc.).

Response:

The as-built design details for all current monitoring wells and the proposed design details for proposed monitor wells are included in Attachment 5 Table 5-1.

Additional Discussion

A list of figures and pages requiring revision based on the responses presented above is included as Section 1 of this submittal. Section 2 includes a copy of these revised pages indicating added text by <u>underline</u> and deleted text by <u>strikeout</u>. Section 3 of this submittal presents the revised figures and revised pages without marked changes. Section 4 is proof of submittal of the permit modification application fee that is required by 30 TAC §330.59(h)(1). The modification dates for each page are shown on each replacement figure or footer of each replacement page. Pages revised based on this NOD response include a February 2010 revision date.

If you have any questions regarding this permit modification request, please feel free to contact me at (936) 568-9451 or by e-mail at tscarborough@hydrex-inc.com.

Sincerely,

Hydrex Environmental, Inc.

Leonell N. Scarborough, P.G.

Hydrogeologist

Attachments

Distribution:

original + 1 copy

Mr. Gale Baker, P.G.

MSW Permits Section

Office of Waste Management, Permits Division

Texas Commission on Environmental Quality

P. O. Box 13087

Austin, TX 78711-3087

- (1) Ms. Heather Ross, Regional Director TCEQ Regional Office 10 3870 Eastex Freeway Beaumont, TX 77703-1892
- (1) Mr. Chris Fitzgerald
 Landfill Manager
 Angelina County Waste Management Center
 P.O. Box 1862
 Lufkin, Texas 75902-1862
- (1) Hydrex Environmental, Inc.

Texas Commission on Environmental Quality

Permit or Registration Application for Municipal Solid Waste Facility

Part I

A. General Information

Facility Name:			Angelina County Waste Management Center					
Physical or Street Add	ress (if avai	lable):	Approximately 1 mile south of the intersection of FM 58 and FM 2108 on 7521 FM 58					
(City) (County)(State)((Zip Code):	1	Lufkin	Angeli	na	TX	75901	
(Area Code) Telephone	e Number:		936-632-7168	3			* 3.1	
Charter Number:			N/A					
If the application is sub Office of the Secretary				ovide the	Charte	r Number a	as recorded with	
Operator Name ¹ :			Angelina Cou	inty				
Mailing Address:			P. O. Box 908	3				
(City) (County)(State)(Zip Code):		Lufkin	Angeli	na	TX	75902	
(Area Code) Telephone			936-634-5413					
(Area Code) FAX Num	ber:							
Charter Number:			N/A					
Physical or Street Addr (City) (County)(State)((Area Code) Telephone	Zip Code):						Î	
	e Number:							
Charter Number:								
If the application is su register an Agent in Se complete mailing addre Agent Name:	ervice or Ag	ent of S	Service with the 1	Texas Se	cretary	of State's	the applicant moffice and provid	
Mailing Address:								
(City) (County)(State)(Zip Code):							
(Area Code) Telephone						1		
(Area Code) FAX Num	ber:							
Application Type:								
ADDIICAIIOH LVDE								
		Maior	Amendment		Mino	r Amanda	ent	
Permit Registration			Amendment ication			or Amendm oorary Autl		

Notice of Deficiency Response

w/out Public Notice

¹ The operator has the duty to submit an application if the facility is owned by one person and operated by another [30 TAC 305.43(b)]. The permit will specify the operator and the owner who is listed on this application [Section 361.087 Texas Health and Safety Code].

Fac	ility Classification:						
\boxtimes	Type I		Type IV		Type V		Type IX
	Type I AE		Type IV AE		Type VI		
Acti	vities covered by thi	s appli	cation (check all t	hat app	oly):		
jШ,	Storage		Processing	g		Disposal	
Was	ste management un	ts cove	ered by this applic	ation (d	check all that apply):	
	Containers		Tanks		Surface Impoundments		Landfills
	Incinerators		Composting		Type IV Demonstration Unit		Type IX Energy/Material Recovery
	Other (Specify)				Other (Specify)		
	Other (Specify)				Other (Specify)		
33?	☐ Yes ⊠ t	No				ordance	with 30 TAC Chapter
If ye	es, state the other T	CEQ p	rogram authorizat	ions re	quested.		
perr Also requ	difications, and tem nit or registration co o, provide an expla uested.	porary onditio anatior	authorizations, p ns and supporting of why the am	rovide g docu endme	a brief description ments referenced ent, modification, o	of the by the or temp	on. For amendments, exact changes to the permit or registration. orary authorization is
Gro	dification to the pe oundwater Monitor	rmit a	s required under stem changes)	30 14	C 330 Subchapte	er J (W	ell Spacing and
Oic	and water world	ng Oy	otom changes)				
Doe	s the application co	ntain c	onfidential Materia	al?	Yes No		

If yes, cross-reference the confidential material throughout the application and submit as a separate document or binder conspicuously marked "CONFIDENTIAL."

Bilingual Notice Instructions

For certain permit applications, public notice in an alternate language is required. If an elementary school or middle school nearest to the facility offers a bilingual program, notice may be required to be published in an alternative language. The Texas Education Code, upon which the TCEQ alternative language notice requirements are based, trigger a bilingual education program to apply to an entire school district should the requisite alternative language speaking student population exist. However, there may not exist any bilingual-speaking students at a particular school within a district which is required to offer the bilingual education program. For this reason, the requirement to publish notice in an alternative language is triggered if the nearest elementary or middle school, as a part of a larger school district, is required to make a bilingual education program available to qualifying students and either the school has students enrolled at such a program on-site, or has students who attend such a program at another location in satisfaction of the school's obligation to provide such a program as a member of a triggered district.

If it is determined that a bilingual notice is required, the applicant is responsible for ensuring that the publication in the alternate language is complete and accurate in that language. Electronic versions of

	template examples are available from the TCEQ to help the applicant complete the the alternative language.
Bilingual Notic	ce Application Form:
Bilingual notic	ce confirmation for this application:
1.	Is a bilingual program required by the Texas Education Code in the school district where the facility is located? \boxtimes YES \square NO
	(If NO, alternative language notice publication not required)
2.	If YES to question 1, are students enrolled in a bilingual education program at either the elementary school or the middle school nearest to the facility?
(IF YES to q consider the r	uestions 1 and 2, alternative language publication is required; If NO to question 2, then next question)
3.	If YES to question 1, are there students enrolled at either the elementary school or the middle school nearest to the facility who attend a bilingual education program at another location? YES NO
	estions 1 and 3, alternative language publication is required; If NO to question 3, then next question)
4.	If YES to question 1, would either the elementary school or the middle school nearest to the facility be required to provide a bilingual education program but for the fact that it secured a waiver from this requirement, as available under 19 TAC §89.1205(g)? ☐ YES ☐ NO
	estions 1 and 4, alternative language publication is required; If NO to question 4, alternative ce publication not required)
If a bilingual nearest to the	education program(s) is provided by either the elementary school or the middle school facility, which language(s) is required by the bilingual program?
Note: Applic complete app and copying b	cants for new permits and major amendments must make a copy of the administratively discation available at a public in the county where the facility is, or will be, located for review by the public.
Public place v	where administratively complete permit application will be located.
Public Place court house, or	(e.g., public library, county N/A city hall, etc.):
Mailing Addre	SS:
(City) (County	v)(State)(Zip Code):
(Area Code) T	Telephone Number:

B. Facility Location

Except for Type I AE	and Type IV AE	landfill facilities, for permits, registrations, amendments, and
		provide the URL address of a publicly accessible internet
website where the appli	cation and all re-	visions to that application will be posted.
www.angelinacounty.ne		
Local Government Jur		elina County
Within City Limits of:	N/A	
Within Extraterritorial		ty of: Lufkin
		solid waste disposal or processing facility located in an area in
which the governing b	ody of the muni	cipality or county has prohibited the disposal or processing of
municipal or industrial	solid waste? (If	YES, provide a copy of the ordinance or order):
☐ YES ⊠ NO		
	of the location of	the facility with respect to known or easily identifiable
landmarks.		
Approximately 1 mile	south of the inte	ersection of FM 58 and FM 2108 on 7521 FM 58
		est United States or state highway to the facility.
Approximately 1 mile	south of the inte	ersection of FM 58 and FM 2108
Sacretary described and the		
		eographic coordinates of the facility.
Latitude	N 31-15-00 W 94-42-20	
Longitude	270 feet	
Elevation (above msl)	270 leet	
Is the facility within the	Coastal Manage	ement Program boundary?
to the radiity within the	Coastal Mariage	cinent rogram boundary: res 140
exas Department of Tr	ansportation Dist	trict Location:
TXDOT District Name		Lufkin District 11
District Engineer's Nar	ne:	Dennis Cooley, P. E.
Street or P. O. Box:		1805 North Timberland Drive
(City) (County)(State)	(Zip Code):	Lufkin Angelina TX 75901
(Area Code) Telephon		936-634-4433
(Area Code) FAX Num	STORY SHOW STATE OF THE STATE O	936-633-4378
(000 000 4070
he local governmental	authority or ager	ncy responsible for road maintenance:
Contact Person's Nam		Lynn George, Angelina Co. Commissioner
Street or P. O. Box:		P. O. Box 908
(City) (County)(State)	Zip Code):	Lufkin Angelina TX 75902
(Area Code) Telephon	Control of the Contro	936-632-5531
(Area Code) FAX Num	The state of the s	N/A
(oc occo) 170 (14011		THE
State Representative:		
District Number:		12
State Representative's	Name:	Jim McReynolds
District Office Address	a hostication of the	203 South First Street, Suite A
(City) (County)(State)		Lufkin Angelina TX 75904
(Area Code) Telephon		
(Area Code) FAY Num		936-634-9786

State Senator:

District Number:	3					
State Senator's Name:	Robert Nichols					
District Office Address:	4100 South Medford Drive, Suite B-2					
(City) (County)(State)(Zip Code):	Lufkin	Angelina	TX	75901		
(Area Code) Telephone Number:	936-699-4			1		
(Area Code) FAX Number:						

Council of Government (COG) Information:

COG Name:	Deep East Texas					
COG Representative's Name:	Walter Diggles					
COG Representative's Title:	Executive Director					
Street or P. O. Box:	210 Premier Drive					
(City) (County)(State)(Zip Code):	Jasper Jasper TX 75951					
(Area Code) Telephone Number:	409-384-5704					
(Area Code) FAX Number:	409-384-53	390				

River Basin Information:

River Authority:	Angelina & Neches River Authority					
Contact Person's Name:	Kenneth Reneau					
Watershed Sub-Basin Name:	Upper Neches River					
Street or P. O. Box:	210 East Lufkin Avenue					
(City) (County)(State)(Zip Code):	Lufkin Angelina TX 75901					
(Area Code) Telephone Number:	936-632-7795					
(Area Code) FAX Number:	936-632-2	564				

This site is located in th	e following District of	the U.S. Army Corps	of Engineers:	
Albuquerque, NM	Ft. Worth, TX	☐ Galveston, TX	☐ Tulsa, OK	

C. Maps

General

For permits, registrations, and amendments only, submit a topographic map, ownership map, county highway map, or a map prepared by a registered professional engineer or a registered surveyor which shows the facility and each of its intake and discharge structures and any other structure or location regarding the regulated facility and associated activities. Maps must be of material suitable for a permanent record, and shall be on sheets 8-1/2 inches by 14 inches or folded to that size, and shall be on a scale of not less than one inch equals one mile. The map shall depict the approximate boundaries of the tract of land owned or to be used by the applicant and shall extend at least one mile beyond the tract boundaries sufficient to show the following:

each well, spring, and surface water body or other water in the state within the map area;

the general character of the areas adjacent to the facility, including public roads, towns and the nature of development of adjacent lands such as residential, commercial, agricultural, recreational, undeveloped, etc;

the location of any waste disposal activities conducted on the tract not included in the application; and

the ownership of tracts of land adjacent to the facility and within a reasonable distance from the proposed point or points of discharge, deposit, injection, or other place of disposal or activity.

General location maps

For permits, registrations, and amendments only, submit at least one general location map at a scale of one-half inch equals one mile. This map shall be all or a portion of a county map prepared by Texas Department of Transportation (TxDOT). If TxDOT publishes more detailed maps of the proposed facility area, the more detailed maps shall also be included in Part I. Use the latest revision of all maps.

Land ownership map

Provide a map that locates the property owned by adjacent and potentially affected landowners. The maps should show all property ownership within 500 feet of the facility, on-site facility easement holders, and all mineral interest ownership under the facility.

Landowners list

Provide the adjacent and potentially affected landowners' list, keyed to the land ownership map with each property owner's name and mailing address. The list shall include all property owners within 500 feet of the facility, easement holders, and all mineral interest ownership under the facility. Provide the property, easement holders', and mineral interest owners' names and mailing addresses derived from the real property appraisal records as listed on the date that the application is filed. Provide the list in electronic form, as well.

D. Property owner information

For permits, registrations, amendments, and modifications that change the legal description, a change in owner, or a change in operator only, provide the following:

- (1) the legal description of the facility;
 - the abstract number as maintained by the Texas General Land Office for the surveyed tract of land;
 - (B) the legal description of the property and the county, book, and page number or other generally accepted identifying reference of the current ownership record:
 - (C) for property that is platted, the county, book, and page number or other generally accepted identifying reference of the final plat record that includes the acreage encompassed in the application and a copy of the final plat, in addition to a written legal description;
 - a boundary metes and bounds description of the facility signed and sealed by a registered professional land surveyor;
 - (E) on-site easements at the facility, and
 - (F) drawings of the boundary metes and bounds description; and
- (2) a property owner affidavit signed by the owner.

E. Legal authority

Provide verification of the legal status of the owner and operator, such as a one-page certificate of incorporation issued by the secretary of state. List all persons having over a 20% ownership in the proposed facility.

	Private		Corporation		Partnership		Proprietorship		Non-Profit Organization
	Public		Federal		Military		State		Regional
\boxtimes	County		Municipal		Other (Specify)			•	
Does	the opera	tor ov	vn the facility ur	nits ar	nd the facility pro	operty'	? Yes] No	
chan the fa	ge in owne acility units	er, or a	a change in ope	erator	nents, and mod s submit a copy propriate, and id	of the	ns that changes lease for the use	the le	gal description the option to b
GLES CO.	er Name:								
100	et or P. O.								
(City) (County)(State	e)(Zip Code):						
(Area	a Code) Te	elepho	ne Number:				1		
(Area	a Code) FA	X Nu	mber:						
Char	ter Numbe	r:							
For p	permits, rev	gistrat chan	ge in operators	s sub	mit a list of all	Texas	change the lega s solid waste site	l desc	cription, a chan
For print over S	permits, rev	gistrat chan	ions, amendme	s sub thin th	and modification mit a list of all ne last ten years Permit/Reg. No.	Texas	change the lega s solid waste site	es tha	cription, a chan at the owner a es of Operation
For pin over SN/A	permits, required to the control of	gistrat chan owned	ions, amendme ge in operators or operated wi Site Type	s sub thin th	mit a list of all ne last ten years ermit/Reg. No.	Texas	County	Date	es of Operation
For print over Solution Solution Solution Solution For Foreign Solution For Foreign Solution For Foreign Solution Solution For print Solution Solution Solution Foreign Foreign Solution Foreign For	permits, revolute, or a stor have of ite Name	gistrat chan bwned	ions, amendme ge in operators or operated wi Site Type	s sub thin th	mit a list of all ne last ten years ermit/Reg. No.	Texas	s solid waste site	Date	es of Operation
For print over SN/A	permits, required to the control of	gistrat chan bwned	ions, amendme ge in operators or operated wi Site Type	s sub thin th	mit a list of all ne last ten years ermit/Reg. No.	Texas	County Duntries in which	Date the ov	es of Operation
For print over SN/A Submarker S	permits, revolute, or a ator have of ite Name	gistrat chan bwned	ions, amendme ge in operators or operated wi Site Type	s sub thin th	mit a list of all ne last ten years ermit/Reg. No.	Texas	County Duntries in which	Date the ov	es of Operation where and operation y Agency
For print over the second of the second over t	permits, revolver, or a later have of ite Name ite Name ite Name	gistrat chan pwned all so nancia	ions, amendme ge in operators or operated wi Site Type lid waste sites in interest. Location	s sub thin the P	mit a list of all ne last ten years Permit/Reg. No.	Texas.	County Duntries in which Regulation (Narrows) Chapter 30, Occ	Date the ovulatorine &	es of Operation where and operation y Agency Address)
For print over the second over	permits, revolver, or a later have of ite Name it a list of a direct fire ite Name i	gistrat chan owned all so nancia waste I be en	ions, amendment ge in operators or operated with Site Type lid waste sites in interest. Location e facility supervemployed before of the principal	n all s	mit a list of all ne last ten years Permit/Reg. No. Permit/Reg. No. States, territories Dates of Oper as defined in 30 mencing facility nd supervisors	Texas. s, or contained attion TAC operate of the	County Duntries in which Regulation (Narrows) Chapter 30, Occion.	Date the overlatory me &	es of Operation vner and opera y Agency Address) onal Licenses
in over operation of the second operation of the second operation	permits, revolver, or a later have of ite Name it a list of a direct fire ite Name i	gistrat chan owned all so nancia waste l be ei	ions, amendme ge in operators or operated wi Site Type lid waste sites i l interest. Location e facility superv mployed before of the principa s affiliations wit	n all s	mit a list of all ne last ten years Permit/Reg. No. Permit/Reg. No. States, territories Dates of Oper as defined in 30 mencing facility nd supervisors	Texas. s, or contained attion TAC operate of the	County Duntries in which Regulation (Narrows) Chapter 30, Occion.	Date the ovulatory ne &	es of Operation where and operation where and operation y Agency Address) conal Licenses a or's organization ties.

For landfill permit applications only, evidence of competency to operate the facility shall also include landfilling and earthmoving experience if applicable, and other pertinent experience, or licenses as described in 30 TAC Chapter 30 possessed by key personnel. The number and size of each type of equipment to be dedicated to facility operation will be specified in greater detail on Part IV of the application within the site operating plan.

Landfilling/Earthmoving Equipment Types	Personnel Experience or Licenses

For mobile liquid waste processing units, submit a list of all solid waste, liquid waste, or mobile waste units that the owner and operator have owned or operated within the past five years. Submit a list of any final enforcement orders, court judgments, consent decrees, and criminal convictions of this state and the federal government within the last five years relating to compliance with applicable legal requirements relating to the handling of solid or liquid waste under the jurisdiction of the commission or the United States Environmental Protection Agency. Applicable legal requirement means an environmental law, regulation, permit, order, consent decree, or other requirement.

Solid waste, liquid waste, or mobile waste units owned or operated within past 5 years	Texas and federal final enforcement orders, court judgments, consent decrees, and criminal convictions

G. Appointments

Provide documentation that the person signing the application meets the requirements of 30 TAC §305.44, Signatories to Applications. If the authority has been delegated, provide a copy of the document issued by the governing body of the owner or operator authorizing the person that signed the application to act as agent for the owner or operator.

H. Application Fees

For a new permit, registration, amendment, modification, or temporary authorization, submit a \$150 application fee.

For authorization to construct an enclosed structure over an old, closed municipal solid waste landfill in accordance with 30 TAC 330 Subchapter T, submit a \$2,500 application fee.

If paying by check, send payment to:

Texas Commission on Environmental Quality Financial Administration Division, MC 214 P. O. Box 13087 Austin, Texas 78711-3087

Payment maybe made online using TC	EQ e-pay at www.tceg.state.tx.us/e-services/	
E-pay confirmation number		

PROPERTY OWNER AFFIDAVIT

"],	
(property owner) acknowledge that the State of Texas may hold me either jo maintenance, and closure and post-closure care of the fac closure, I acknowledge that I have a responsibility to file v	ility. For a facility where waste will remain after
public advising that the land will be used for a solid waste begins operating as a municipal solid waste landfill facility, disposal operations and closure of the landfill units in acco §330.19, Deed Recordation. I further acknowledge that have access to the property during the active life and posfor the purpose of inspection and maintenance."	facility prior to the time that the facility actually and to file a final recording upon completion or rdance with Title 30 Texas Administrative Code I or the operator and the State of Texas shall
(Owner signature)	(Date)

Signature Page

Wes Suiter	County Judge
(Operator)	(Title)
supervision in accordance with a system evaluate the information submitted. Bas system, or those persons directly respons to the best of my knowledge and belief, the system of the best of my knowledge and belief, the system of the best of my knowledge and belief.	ment and all attachments were prepared under my direction or designed to assure that qualified personnel properly gather and ed on my inquiry of the person or persons who manage the sible for gathering the information, the information submitted is, rue, accurate, and complete. I am aware there are significant including the possibility of fine and imprisonment for knowing
TO BE COMPLETED BY THE OPERATOREPRESENTATIVE FOR THE OPERATORE	OR IF THE APPLICATION IS SIGNED BY AN AUTHORIZED
NEI NEGEN MINE : ON THE OF EACH	
1,	, hereby designate(Print or Type Representative Name)
I,(Print or Type Operator Name)	(Print or Type Representative Name)
Texas Commission on Environmental Qua Texas Solid Waste Disposal Act permit. I application, for oral statements given by r for compliance with the terms and cond application.	Commission; and/or appear for me at any hearing or before the ality in conjunction with this request for a Texas Water Code or further understand that I am responsible for the contents of this my authorized representative in support of the application, and itions of any permit which might be issued based upon this rinted or Typed Name of Operator or Principal Executive Officer
_	Signature
SUBSCRIBED AND SWORN to before me	by the said <u>Wes Suiter</u>
On this 15th day of Febr	uary
My commission expires on the20th	day of <u>February</u> , <u>2010</u>
SALLIE ALEXANDER Notary Public STATE OF TEXAS My Comm. Exp. 2-20-2010	Angelina County, Texas
(Note: Application Must Bear Signature &	Seal of Notary Public)

ANGELINA COUNTY WASTE MANAGEMENT CENTER ADJACENT LANDOWNERS LIST

The attached landowner map indicates the location of the Angelina County Waste Management Center landfill. The names and addresses of adjacent landowners within 500 feet of the facility are provided below, numerically cross referenced with the attached map.

- 1. Angelina County Waste Management Center (the applicant)
- 2. Other property owned by Angelina County
- HSH Properties Partnership LP P.O. Box 1365 Lufkin, TX. 75902-1365
- Temple-Inland FPC c/o Prop Tax Dept/ Robert Samford P.O. Box 1149 Austin, TX. 78767
- De Soto Pipeline Company, Inc. P.O. Box 708 Lufkin, TX. 75902-0708

Information regarding property location and landowner names and addresses is based on data obtained from the Angelina County Appraisal District.

MINERAL INTEREST OWNERS UNDER THE FACILITY

TIN, INC.

Attn: Kenneth G. Christopher 303 S. Temple Drive Diboll, Texas 75941

Carrie Wiener Ajnassian 944 Stanford St. Santa Monica, CA 90403-2224

Alyson Alexander, Trustee FBO the Alyson D. Alexander 1988 Trust Dated 4/6/88 P.O. Box 3076 Santa Barbara, CA 93130

Malcolm Graham Alexander, Jr. 5425 Quail Run Blaine, Washington 98230

Rose Mary W. Balter 130 Garlan Rd. Newton, MA 02159

Laurie Alexander Black 1241 Cerro Gordo Rd. Santa Fe, NM 87501-6106 H. Whitney Boggs, Jr.,

Trustee of the Mary H. Boggs Testamentary Trust

630 Piermont Shreveport, LA 71106

Bonnie Cockrell P.O. Box 8511 Aspen, CO 81612

Susan Hedrick Conie 8418 Beeswing Court Dublin, OH 40317

Lynn Fisher 1860 Old Mill Rd. Lufkin, TX 75904-1822

Susan S. Green 94 Martin Avenue Barrington, RI 02806

Mildred L. H. Grinstead 211 Belmed Lane Tyler, TX 75701 Diane R. Harris 5404 Bright Star Trail Arlington, TX 76017

Melba J. Heselmeyer 15514 Seahorse Houston, TX 77062

Andrew Karl Hursey c/o Colleen Hursey-Dunstane 502 W. Shore Drive Alexandria, LA 71303-2089

Sally Ann Hudnall 5623 Melshire Drive Dallas, TX 75230-2113

Charles Stephen Hursey c/o Colleen Hursey-Dunstane 502 W. Shore Drive Alexandria, LA 71303-2089

Colleen Hursey-Dunstane 502 W. Shore Drive Alexandria, LA 71303-2089

Leah Kristen Hursey 1323 Arlington Ave. Baton Rouge, LA 70806

Michael David Hursey c/o Colleen Hursey-Dunstan 502 W. Shore Drive Alexandria, LA 71303-2089

The Jameson Mineral Trust Thomas G. Jameson, Trustee c/o Peter K. Jameson Andrews & Kurth L.L.P. 600 Travis, Suite 4200 Houston, TX 77002

Paul Bruce Hursey 3369 Deborah Dr. Monroe, LA 71201

Calvine W. Jayroe 103 W. 4th St. Loft Taylor, TX 76574

Irwin Ray Jayroe 103 Harmony Hill Ct. Lufkin, TX 75901 JHRSB Partners, L. P. A Delaware Partnership JHRSB Partners, L.P. c/o Jill S. McLinden 272 Voss Road Bethel Park, PA 15102

Karen Kurth Kelly 4717 Innisbrook Court North Elkton, FL 32033

Joseph G. Kurth 11510 Wendover Lane Houston, TX 77024

Joseph G. Kurth, Jr. 3815 Bratton Sugarland, TX 77479

John Henderson, Jr. Testamentary Trust Regions Bank, Trustee Account 390360014 Regions Bank, Trustee J.H. Kurth Jr., Testamentary Trust P. O. Box 1900 Tyler TX 75710-1900

Estate of Melvin H. Kurth
First Bank & Trust East Texas,
Independent Executor
c/o Thomas Rainey, V-P & Trust Officer
First Bank & Trust East Texas
P. O. Box 152020
Lufkin, TX 75915-2020

Christopher Maas 7738 Forest Lane, Suit 425 Dallas, TX 75230

Leisa Maas P.O. Box 16073 Fort Worth, TX 76133

Charles Louis McBride 13203 Willow Forest Drive Louisville, KY 40245

George K. McBride, Jr. 81 Edgewood Place Vicksburg, MS 39180

James Hughes McBride 9221 Frenchman's Way Dallas, TX 75220 Mrs. James A. McMullan 6213 Ravenswood Drive Ft. Worth, TX 76112

James A. McMullan III 6300 Ridgelea Place, Suite 509 Fort Worth, TX 76116

Ora Elizabeth McMullen 6213 Ravenwood Drive Ft. Worth, TX 76112

Frances Maas Mithoff 7304 Good Samaritan Court, #106 El Paso, TX 79912

Estate of Robin Wilson Moore 6175 Preston Creek Court Dallas, TX 75240

Vardeman Griffith Moore 6175 Preston Creek Court Dallas, TX 75240

Selma Ray Kahn Nachman 8333 Douglas Avenue, Suite 1270 Dallas, TX 75225

Ellen W. Oppenheim 156 E. 79thStreet, Apt 7A New York, NY 10021

Alexander C. O'Reilly P. O. Box 59704 Chicgao, IL 60659

Kay Kurth Owen 2423 N.W. 35thSt. Boca Raton, FL 33431

Michael Walter Page P. O. Box 11692 Fort Worth, TX 76110

Aurelia Rice 4012 Kenosha Road Plano, TX 75024

Linda S. Pittman Box 1316 Silsbee, TX 77565

Renrew Minerals, Ltd. 333 Texas St., Suite 2375 Shreveport, LA 71101-5304 Nancy Hedrick Parker 885 East Zia Road Santa Fe, NM 87505

SAVIJO (A Grantor Trust) Ms. Jo Kurth Jagoda 7131 Brookshire Circle Dallas, TX 75230

Susan Kay Page Schairbaum 3688 Encanto Ft. Worth, TX 75230

Jeff M. Segrest 9120 Hwy 18 Hermanville, MS 39086

Thomas L. Segrest Graham & Segrest P. O. Box 1442 Columbus, MS 39703-1442

Charlotte Jane Squyres (Mrs. Hulen Squyres) Route 2, Box 4350 Lufkin, TX 75901

Carol Brooke Stollenwereck 4305 University Blvd. Dallas, TX 75205

June Carol Henderson Stollewerck 6124 St. Andrews Drive Dallas, TX 75205-1732

Laura Kathryne Sumrall 10630 E. Stockbridge Ct. Zeeland, MI 49464

Mildred W. Teitelbaum 5326 Paisley Lane Houston, TX 77096

Jimmy L. Tipton P. O. Box 2071 Rockport, TX 78382

Jay L. Wiener 3858 Redbud Road Jackson, MS 39211

John S. Wiener 3313 Devon Road Durham, NC 27707 Mrs. Kathryn L. Wiener 3858 Redbud Road Jackson, MS 39211

Mary L. Weiner 166 Bank Street, 1A New York, NY 10014

William B. Wiener, III 3 Bradford Court Houston, TX 77024

Benjamin Dee Winston P. O. Box 2359 Lufkin, TX 75901

John Randolph Winston, III P. O. Box 152802 Lufkin, TX 75915-2802

Simon Wood Winston P. O. Box 2359 Lufkin, TX 75901

Kathleen Tubbs Wizbicki 551 Valkeith Houston, TX 77096

Irma Veree Henderson Alexander (Irma) Veree Henderson Alexander Living Trust c/o Angelo Pantele, Agent 48737 Sageflower Lane Palm Desert, CA 92260-6739

Dean Bruce Cowie, Jr. P. O. Box 4922 Lancaster, PA 17604

Douglas Randolph Cowie 50 Alwington Ave. Kingston, Ontario Canada, K4L 4R3

Joal Fischer, MD 1607 Dilwort Road West Charlotte, NC 28203-5213

Karen W. Freyer 5908 Southmoor Lane, Cherry Hill Village, CO 80111

Simon W. Henderson III P. O. Box 1365 Lufkin, TX 75902-1365 Kurth Family Partnership c/o Melvin E. Kurth, Jr. 235 Camino Del Norte Santa Fe, NM 87501

Nancy W. Marcus 4500 Roland Ave., #806 Dallas, TX 75219

Lyska K, Marsh 1295 Sheridan Beaumont, TX 77706

Laura Sue Henderson McMurry 3663 Del Monte Houston, TX 77019

Joseph A. Meis, MD 782 Timberhill Lane Highland Park IL 60035

J.F. Reeves 2525 Lake Oaks Road Waco, TX 76710

Trudy H. O'Reilly 3113 Chesapeake Ave. Hampton, VA 23661-3439

Mrs. Elizabeth Henderson Page 4429 Overton Crest Fort Worth, TX 76109

Matt A. Meis 11639 Cohansey Road San Diego, CA 92131

Mrs. Laura Thompson Reeves 2525 Lake Oaks Road Waco, TX 76710

Sandfield Limited Partnership c/o Mrs. Joan S. Jackson 10036 Hollow Way Road Dallas, TX 75229

Aimee B. Freyer Valls 4370 Eat Perry Parkway Greenwood Village, CO 80121

Daniel P. Wiener 333 Texas St., Suite 2375 Shreveport, LA 71101-5304 David M. Wiener 333 Texas St., Suite 2375 Shreveport, LA 71101-5304

Earl Louis Wiener 333 Texas St., Suite 2375 Shreveport, LA 71101-5304

Florence Eva Wiener 333 Texas St., Suite 2375 Shreveport, LA 71101-5304

Fred Samuel Wiener 333 Texas St., Suite 2375 Shreveport, LA 71101-5304

Samuel G. Wiener, Jr. 333 Texas St., Suite 2375 Shreveport, LA 71101-5304

Thomas Eli Wiener One Belmont Ave., Suite 605 Bala Cynwyd, PA 19004-1609

Sara M. Wiener 333 Texas St., Suite 2375 Shreveport, LA 71101-5304

William B. Wiener, Jr. 333 Texas St., Suite 2375 Shreveport, LA 71101-5304

Mrs. Virginia Henderson Winston 4205 Highway 59 North Lufkin, TX 75901

Carol Cowie Zeppenfeld 1799 Beachfield Road Annapolis, MD 21410

Anderson Mineral Trust Regions Bank, Trustee Joseph E. Hand Jr. Regions Bank P. O. Box 1900 Tyler, TX 75710

J. Kurth Brown 2816 Revere Street Houston, TX 77098-1314

Patricia Jayroe Gage Testamentary Trust Hibernia National Bank, Trustee Attn: Thomas Kelley, Trust Dept. P. O. Box 3928 Beaumont, TX 77704 Judith Kurth Gibson Trust Regions Bank, Trustee Joseph E. Hand Jr. Regions Bank P. O. Box 1900 Tyler, TX 75710

Christine Henderson 235 Creekwood Huntington, TX 75949

Henderson Mineral, Inc. George H. Henderson, III President P. O. Box 3659 Lufkin, TX 75903-3659

Kurth Investment Corporation c/o Mr. Wyatt Leinhart Box 1506 Lufkin, TX 75901

Katherine Kurth Trust Regions Bank, Trustee Joseph E. Hand Jr. Regions Bank P. O. Box 1900 Tyler, TX 75710

Estate of Nance Thompson Medford c/o Davod Medford, Executor 1307 8th Avenue Fort Worth, TX 76104

Russell T. Rudy Energy, L.L.C. 5701 Woodway Drive, Suite 222 Houston, TX 77057-1505

Texas Arkansas & Florida Mineral Trust c/o Simon W. Henderson III P. O. Box 1365 Lufkin, TX 75902-1365

Melissa Cockrell Theriot 430 Irvine Avenue Newport Beach, CA 92663

Winston Securities Partnership, c/o Virginia Henderson Winston 4205 Highway 59 North Lufkin, TX 75901

John Henderson, Jr. P. O. Box 545 Hunt, TX 78024 John Henderson, Jr. Trust P. O. Box 545 Hunt, TX 78024

John H. Henderson, III P. O. Box 90573 San Antonio, TX 78209

Mark Henderson 3089 Fm 326 Lufkin, TX 75901-1822

HSH Properties Partnership, L. P c/o Simon Wood Henderson, III P. O. Box 1365 Lufkin, TX 75902-1365

Mrs. Laura Thompson Reeves 2525 Lake Oaks Road Waco, TX 76710

Elizabeth Louise Henderson Page 4429 Overton Crest Fort Worth, TX 76109

Hattie K. Parker c/o Aaron Ball Chamberlain Hrdlicka Law Firm 1200 Smith St. Suite 1400 Houston, TX 77002

Jonathan A. Parker c/o 4899 Montorose Blvd. Apt. 1103 Houston, TX 77006-6167

Robert F. Parker, II c/o 4899 Montorose Blvd. Apt. 1103 Houston, TX 77006-6167

Mrs. Irma Veree Henderson Alexander Veree Henderson Alexander Living Trust c/o Angelo Pantele, Agent 48737 Sageflower Lane Palm Desert, CA 92260-6739

Laura Sue H. McMurrey 3663 Del Monte Houston, TX 77019

MAP Securities Partnership c/o Simon W. Henderson III P.O. Box 1365 Lufkin, TX 75902-1365 Section 1
List of Revised Figures and Pages

List of Revised Figures and Pages

Attachment No. Exhibit Description of Change						
5	8.3	Site Map Showing Proposed Groundwater Monitoring System				
List of Added Figures						
Attachment No.	Exhibit	Title				
5	8.3.1.1	Groundwater Contour Map, Uppermost Aquifer, 02/07/1996 Water Levels				
5	8.3.1.2	Groundwater Contour Map, Uppermost Aquifer, 05/09/1996 Water Levels				
5	8.3.1.3	Groundwater Contour Map, Uppermost Aquifer, 08/12/1996 Water Levels				
5	8.3.1,4	Groundwater Contour Map, Uppermost Aquifer, 11/07/1996 Water Levels				
5	8.3.2.1	Groundwater Contour Map, Uppermost Aquifer, 02/05/1997 Water Levels				
5	8.3.2.2	Groundwater Contour Map, Uppermost Aquifer, 05/07/1997 Water Levels				
5	8.3.2.3	Groundwater Contour Map, Uppermost Aquifer, 08/04/1997 Water Levels				
5	8.3.2.4	Groundwater Contour Map, Uppermost Aquifer, 11/10/1997 Water Levels				
5	8.3.3.1	Groundwater Contour Map, Uppermost Aquifer, 05/05/1998 Water Levels				
5	8.3.3.2	Groundwater Contour Map, Uppermost Aquifer, 11/09/1998 Water Levels				
5	8.3.4.1	Groundwater Contour Map, Oppermost Aquifer, 05/05/1999 Water Levels				
5	8.3.4.2	Groundwater Contour Map, Uppermost Aquifer, 10/20/1999 Water Levels				
5	8.3.4.3	Groundwater Contour Map, Oppermost Aquifer, 10/20/1999 Water Levels				
5	8.3.5.1	Groundwater Contour Map, Oppermost Aquifer, 17/02/1999 Water Levels Groundwater Contour Map, Uppermost Aquifer, 04/04/2000 Water Levels				
5	8.3.5.2	Groundwater Contour Map, Oppermost Aquifer, 04/04/2000 Water Levels				
5	8.3.5.3					
5	8.3.5.4	Groundwater Contour Map, Uppermost Aquifer, 10/25/2000 Water Levels				
5	8.3.6.1	Groundwater Contour Map, Uppermost Aquifer, 11/06/2000 Water Levels				
5		Groundwater Contour Map, Uppermost Aquifer, 04/19/2001 Water Levels				
	8.3.6.2	Groundwater Contour Map, Uppermost Aquifer, 05/08/2001 Water Levels				
5	8.3.6.3	Groundwater Contour Map, Uppermost Aquifer, 10/08/2001 Water Levels				
5	8.3.6.4	Groundwater Contour Map, Uppermost Aquifer, 11/13/2001 Water Levels				
5	8.3.7.1	Groundwater Contour Map, Uppermost Aquifer, 04/02/2002 Water Levels				
5	8.3.7.2	Groundwater Contour Map, Uppermost Aquifer, 05/13/2002 Water Levels				
5	8.3.7.3	Groundwater Contour Map, Uppermost Aquifer, 10/10/2002 Water Levels				
5	8.3.7.4	Groundwater Contour Map, Uppermost Aquifer, 11/05/2002 Water Levels				
5	8.3.8.1	Groundwater Contour Map, Uppermost Aquifer, 05/07/2003 Water Levels				
5	8.3.8.2	Groundwater Contour Map, Uppermost Aquifer, 05/20/2003 Water Levels				
5	8.3.8.3	Groundwater Contour Map, Uppermost Aquifer, 11/10/2003 Water Levels				
5	8.3.8.4	Groundwater Contour Map, Uppermost Aquifer, 11/26/2003 Water Levels				
5	8.3.9.1	Groundwater Contour Map, Uppermost Aquifer, 05/03/2004 Water Levels				
5	8.3.9.2	Groundwater Contour Map, Uppermost Aquifer, 06/01/2004 Water Levels				
5	8.3.9.3	Groundwater Contour Map, Uppermost Aquifer, 09/07/2004 Water Levels				
.5	8.3.9.4	Groundwater Contour Map, Uppermost Aquifer, 11/08/2004 Water Levels				
5	8.3.9.5	Groundwater Contour Map, Uppermost Aquifer, 11/10/2004 Water Levels				
5	8.3.10.1	Groundwater Contour Map, Uppermost Aquifer, 05/02/2005 Water Levels				
5	8.3.10.2	Groundwater Contour Map, Uppermost Aquifer, 05/26/2005 Water Levels				
5	8.3.10.3	Groundwater Contour Map, Uppermost Aquifer, 11/03/2005 Water Levels				
5	8.3.10.4	Groundwater Contour Map, Uppermost Aquifer, 11/07/2005 Water Levels				
5	8.3.11.1	Groundwater Contour Map, Uppermost Aquifer, 01/03/2006 Water Levels				
5	8.3.11.2	Groundwater Contour Map, Uppermost Aquifer, 05/31/2006 Water Levels				
5	8.3.11.3	Groundwater Contour Map, Uppermost Aquifer, 06/29/2006 Water Levels				
5	8.3,11.4	Groundwater Contour Map, Uppermost Aquifer, 08/14/2006 Water Levels				
5	8.3.11.5	Groundwater Contour Map, Uppermost Aquifer, 11/07/2006 Water Levels				

List of Added Fig	ures Continued				
Attachment No.	Exhibit		Title		
5	8.3.11.6	Groundwater Contour Map, Uppermost Aquifer, 11/09/2006 Water			
5	8.3.12.1	Groundwater Contour Map, Uppermost Aquifer, 02/14/2007 Water Le			
5	8.3.12.2	Groundw	Groundwater Contour Map, Uppermost Aquifer, 05/02/2007 Water Lev		
5	8.3.12.3	Groundw	'Groundwater Contour Map, Uppermost Aquifer, 07/05/2007 Water Le		
5	8.3.12.4	Groundw	ater Contour Map, Uppermost Aquifer, 08/27/2007 Water Levels		
5	8.3.12.5	Groundw	ater Contour Map, Uppermost Aquifer, 11/07/2007 Water Levels		
5	8.3.13	Monitor \	Monitor Well Construction Details		
List of Added/Rev	vised Pages				
Attachment No.	Page Number		Торіс		
5	NA	Cover Pa	age		
5	NA	Certificat	ion Page		
5	III-5-i	Title Pag	Title Page		
5	III-5-ii	Table of Contents			
5	III-5-iii	Table of Contents			
5	III-5-1	Section 1 - Introduction			
5	111-5-2	Section 2 - Historic Groundwater Monitoring Data			
5	III-5-3	Section 3	3 - Site Hydrogeological Conditions		
5	111-5-4	Section 4	4 - Maps		
5	111-5-5	Section 5	5 - Groundwater Monitoring System		
5	III-5-5A	Table 5-1	Groundwater Monitoring Well Design Summary		
5	III-5-7, 7A, 7B	Section 7	7 - Historical Groundwater Analysis		
5	III-5-8, 8A	Section 8	3 - Exhibits		
List of Added/Rev	vised Tables				
Attachment No.	Page Num	ber	Topic		
5	III-5-5A	1	Table 5-1 Groundwater Monitoring Well Design Summary		
5	III-5-28-1 through III-5-28-71		Tabulation of Groundwater Data		
5	III-5-34		Tabulation of Water Level Measurements		
5	III-5-35 through	III-5-40	Demonstration of interconnectivity between wells MW-1B and MW-18		
5	III-5-41		Section 9 Appendices		

.

Section 2
Underline Strikeout Copy of Attachment 5

ANGELINA COUNTY WASTE MANAGEMENT CENTER TYPE I SANITARY LANDFILL ANGELINA COUNTY, TEXAS MSW PERMIT NO. 2105A

PART III - SITE DEVELOPMENT PLAN ATTACHMENT 5 GROUND-WATER CHARACTERIZATION REPORT

SEPTEMBER 12, 1996

REVISED February 2010

APPLICATION TO
TEXAS NATURAL RESOURCE CONSERVATION COMMISSION
FOR THE AMENDMENT OF
MSW PERMIT NO. 2105

Applicant:

Angelina County Waste Management Center P.O. Box 1862 Lufkin, Texas 75902-1862

Prepared by:

Hydrex Environmental, Inc.

1120 NW Stallings Drive 409 East Hospital Street
Nacogdoches, Texas 759641

This document is issued for permit review purposes only. It is not intended for construction or bidding purposes.

TABLE OF CONTENTS

SE	CTION		PAGE
1	INTRODU	CTION	III-5-1
2	HISTORIC	GROUNDWATER MONITORING DATA	III-5-2
3	SITE HYD	ROGEOLOGICAL CONDITIONS	III-5-3
4	MAPS		III-5-4
5		WATER MONITORING SYSTEM	
6	GROUND	WATER PROGRAM	III-5-6
7	HISTORIC	AL GROUNDWATER ANALYSIS	III-5-7
8	EXHIBITS 8.1 8.2 8.3	Historical Groundwater Data	III-5-9 III-5-29
	8.3.1.1 8.3.1.2 8.3.1.3 8.3.1.4 8.3.2.1 8.3.2.2	Groundwater Contour Map, Uppermost Aquifer, 02/07/1996 Water Levels Groundwater Contour Map, Uppermost Aquifer, 05/09/1996 Water Levels Groundwater Contour Map, Uppermost Aquifer, 08/12/1996 Water Levels Groundwater Contour Map, Uppermost Aquifer, 08/12/1996 Water Levels Groundwater Contour Map, Uppermost Aquifer, 11/07/1996 Water Levels Groundwater Contour Map, Uppermost Aquifer, 02/05/1997 Water Levels Groundwater Contour Map, Uppermost Aquifer, 05/07/1997 Water Levels	III-5-30A III-5-30B III-5-30C III-5-30D III-5-30E III-5-30F
	8.3.2.4 8.3.3.1 8.3.3.2 8.3.4.1 8.3.4.2	Groundwater Contour Map, Uppermost Aquifer, 08/04/1997 Water Levels Groundwater Contour Map, Uppermost Aquifer, 11/10/1997 Water Levels Groundwater Contour Map, Uppermost Aquifer, 05/05/1998 Water Levels Groundwater Contour Map, Uppermost Aquifer, 11/09/1998 Water Levels Groundwater Contour Map, Uppermost Aquifer, 05/05/1999 Water Levels Groundwater Contour Map, Uppermost Aquifer, 10/20/1999 Water Levels	III-5-30H III-5-30I III-5-30J III-5-30K
	8.3.4.3 8.3.5.1 8.3.5.2 8.3.5.3 8.3.5.4 8.3.6.1	Groundwater Contour Map, Uppermost Aquifer, 11/02/1999 Water Levels Groundwater Contour Map, Uppermost Aquifer, 04/04/2000 Water Levels Groundwater Contour Map, Uppermost Aquifer, 05/09/2000 Water Levels Groundwater Contour Map, Uppermost Aquifer, 10/25/2000 Water Levels Groundwater Contour Map, Uppermost Aquifer, 11/06/2000 Water Levels Groundwater Contour Map, Uppermost Aquifer, 04/19/2001 Water Levels	III-5-30N III-5-30O III-5-30P III-5-30Q III-5-30R
	8.3.6.2 8.3.6.3 8.3.6.4 8.3.7.1 8.3.7.2 8.3.7.3	Groundwater Contour Map, Uppermost Aquifer, 05/08/2001 Water Levels Groundwater Contour Map, Uppermost Aquifer, 10/08/2001 Water Levels Groundwater Contour Map, Uppermost Aquifer, 11/13/2001 Water Levels Groundwater Contour Map, Uppermost Aquifer, 04/02/2002 Water Levels Groundwater Contour Map, Uppermost Aquifer, 05/13/2002 Water Levels Groundwater Contour Map, Uppermost Aquifer, 10/10/2002 Water Levels	III-5-30T III-5-30U III-5-30W III-5-30X
	8.3.7.4 8.3.8.1 8.3.8.2 8.3.8.3 8.3.8.4 8.3.9.1	Groundwater Contour Map, Uppermost Aquifer, 11/05/2002 Water Levels Groundwater Contour Map, Uppermost Aquifer, 05/07/2003 Water Levels Groundwater Contour Map, Uppermost Aquifer, 05/20/2003 Water Levels Groundwater Contour Map, Uppermost Aquifer, 11/10/2003 Water Levels Groundwater Contour Map, Uppermost Aquifer, 11/26/2003 Water Levels Groundwater Contour Map, Uppermost Aquifer, 05/03/2004 Water Levels	III-5-30Y III-5-30Z III-5-30AA III-5-30AB

	8.3.9.2	Groundwater Contour Map, Uppermost Aquifer, 06/01/2004 Water Levels	III-5-30AE
	8.3.9.3	Groundwater Contour Map, Uppermost Aquifer, 09/07/2004 Water Levels	III-5-30AF
	8.3.9.4	Groundwater Contour Map, Uppermost Aquifer, 11/08/2004 Water Levels	III-5-30AG
	8.3.9.5	Groundwater Contour Map, Uppermost Aquifer, 11/10/2004 Water Levels	III-5-30AH
	8.3.10.1	Groundwater Contour Map, Uppermost Aquifer, 05/02/2005 Water Levels	III-5-30AI
	8.3.10.2	Groundwater Contour Map, Uppermost Aquifer, 05/26/2005 Water Levels	III-5-30AJ
	8.3.10.3	Groundwater Contour Map, Uppermost Aquifer, 11/03/2005 Water Levels	III-5-30AK
	8.3.10.4	Groundwater Contour Map, Uppermost Aquifer, 11/07/2005 Water Levels	III-5-30AL
	8.3.11,1		III-5-30AM
	8.3.11.2	Groundwater Contour Map, Uppermost Aquifer, 05/31/2006 Water Levels	III-5-30AN
	8.3.11.3	Groundwater Contour Map, Uppermost Aquifer, 06/29/2006 Water Levels	III-5-30AO
	8.3.11.4	Groundwater Contour Map, Uppermost Aguifer, 08/14/2006 Water Levels	III-5-30AP
	8.3.11.5	Groundwater Contour Map, Uppermost Aquifer, 11/07/2006 Water Levels	III-5-30AQ
	8.3.11.6	Groundwater Contour Map, Uppermost Aquifer, 11/09/2006 Water Levels	III-5-30AR
	8.3.12.1	Groundwater Contour Map, Uppermost Aguifer, 02/14/2007 Water Levels	
	8.3.12.2	Groundwater Contour Map, Uppermost Aquifer, 05/02/2007 Water Levels	III-5-30AT
	8.3.12.3		III-5-30AU
	8.3.12.4	Groundwater Contour Map, Uppermost Aquifer, 08/27/2007 Water Levels	III-5-30AV
	8.3.12.5		III-5-30AW
	8.3.13	Monitor Well Construction Details	
	8.4	Cadmium and Mercury in Groundwater	III-5-31
	8.5	Summary of Detected Cadmium and Mercury in Groundwater	III-5-32
	8.6	Range of Standard, Duplicate, & Spike Recovery (%)	III-5-33
	8.7	Tabulation of Water Level Measurements	111-5-34
	8.8	Demonstration of Interconnectivity Between Wells MW-1B and MW-18	III-5-35
9	APPENDIC	CES	III-5- 34 41
	9.1	Initial Groundwater Characterization Report	111-5-3542

Hydrex Environmental, Inc. has been contracted by Angelina County Waste Management Center to provide a groundwater characterization report for the landfill site of the Angelina County Waste Management Center.

This Groundwater Characterization Report is based on a historical review of previous investigations and groundwater monitoring activities at the site. Previous studies that provide the basis of the information presented herein are-include:

- Groundwater Monitoring Reports and Laboratory Analytical Reports (monitoring conducted September 1992 to January 1994 through November 2007.
- Report of Monitor Well Installation, Angelina County Landfill, 114.5-Acre Tract; Pickett-Jacobs Consultants, Inc.; May 26, 1992.
- Supplement No. 1 to Monitor Well Installation, Angelina County Waste Management Center, 114.5-Acre Tract; Pickett-Jacobs Consultants, Inc.; November 2, 1994.
- Supplement No. 2 to Monitor Well Installation, Angelina County Waste Management Center, 114.5-Acre Tract; Pickett-Jacobs Consultants, Inc.; February 24, 1995.
- Initial Groundwater Characterization Report, Angelina County Waste Management Center, 114.5-Acre Tract;
 Hydrex Environmental, Inc.; December 1, 1995.
- Report on Cadmium in Groundwater, Angelina County Waste Management Center, Hydrex Environmental, Inc.; May 26, 1999.
- Applicability of a May 26, 1999 Alternate Source Demonstration (ASD) for Metals in Groundwater, Angelina County Waste Management Center, December 5, 2007.

Previous groundwater monitoring at the Angelina County Waste Management Center consisted of quarterly sampling and analysis of all monitoring wells for TNRCC parameters Groups 1 through 4. Exhibit 8.1 includes is a tabulation of the results of all previous laboratory testing of groundwater at the site.

Background monitoring for Subtitle D parameters was initiated in February 1996. Eight samples were collected and analyzed quarterly over a two year period to establish background values for the required parameters. The last of eight background monitoring events for the first wells installed was conducted in November 1997. Since that time, detection monitoring has been on-going on a semiannual basis.

Results of background and detection monitoring events through November 2007 from wells at Angelina County Waste Management Center are tabulated on pages III-5-28-1 through III-5-28-71in Exhibit 8.1.

One near-surface water-bearing system has been identified at the site. This system occurs within sands and clayey sands of the Yegua Formation. A detailed discussion of site groundwater conditions is provided in Attachment 4, Geological Report, Section 6.3 and in Appendix 9.1 of this attachment.

The uppermost water-bearing unit at the site consists of locally continuous sand bodies bounded by finer grained silt and clay facies. The sand bodies typically do not exceed a thickness of 10 feet. Marginal to the primary silty sand and clayey sand bodies the lithologies are dominated by interbedded silty sand and clay. These thin interbeds are the conduit for communication between the primary sands. This premise is supported by the observation that monitor wells which are completed in interbedded silty sand and clay bodies located marginal to the primary sands have similar water level elevations as those completed in the primary sand bodies. Examples include monitor wells MW-10 and MW-11. Similarly, monitor wells completed in sands which are vertically separated have similar water levels, such as monitor wells MW-7 and MW-8. As a result of the channel-fill nature of the sands, the possibility exists that the individual channels are in contact where meandering channels were deposited on, or incised into older deposits.

Deeper bodies of silty sand and clayey sand are often under confined conditions due to the presence of organic silts and clays which can form a locally confining unit. The lower confining bed of the uppermost aquifer is a hard gray clay with sand seams which underlies the silty sand and clayey sand of the deeper, locally confined zones.

At the site, flow in the uppermost aquifer is to the north-northeast except at the southwestern end of the site where the flow direction is to the southwest (Attachment 4, Exhibit 4-13).

The Darcy equation, stated below, relates groundwater velocity, V, to effective porosity, N_e , hydraulic gradient, I, and hydraulic conductivity, K.

$$V = (K \times I) \div N_o$$

Hydraulic gradient was obtained from calculations and a groundwater contour map constructed for the uppermost water-bearing zone (Exhibit 4-13). The average of these values was given to be 0.014 ft/ft.

Groundwater beneath the site is primarily found in clayey sand (SC) deposits and in silty sand (SM) layers within fat clay (CH). Recognized values for effective porosity are 1% for clay (CL, CH) and 20% for sand (SM, SC).

$$V = (1.0^{-8} \times 0.014 \text{ ft/ft}) \div 0.01 = 3.98 \times 10^{-5} \text{ ft/day (clay)}$$

 $V = (1.0^{-6} \times 0.014 \text{ ft/ft}) \div 0.20 = 1.99 \times 10^{-4} \text{ ft/day (sand)}$

Based upon these values, the horizontal component of linear velocity of groundwater is expected to range from 3.98×10^{-5} ft/day in the clay to 1.99×10^{-4} ft/day in the sand bodies.

A delineation of the Angelina County Waste Management Center property boundary is shown on Exhibit 8.2. The site point of compliance and groundwater monitoring system are presented on Exhibit 8.3. A potentiometric surface map of the uppermost water-bearing zone, which reflects conditions in November 1995, is found as Exhibit 4-13 in Attachment 4.

Groundwater contour maps of the uppermost aquifer are found as Exhibit 8.3.1.1 through 8.3.12.5. Tabulated water level measurements are found as Exhibit 8.7.

Groundwater conditions The groundwater monitoring system for Angelina County Waste Management Center are is described in detail in the Initial Groundwater Characterization Report, Angelina County Waste Management Center; Hydrex Environmental, Inc.; December 1, 1995, which is included as Appendix 9.1 of Attachment 5.

The current certified groundwater monitoring system for the site consists of monitor wells MW-1B, MW-2, MW-3, MW-4, MW-5, MW-6, MW-10, MW-11, MW-12A, MW-13B, MW-14, MW-15A, MW-15B, MW-18, and MW-20. Monitor wells MW-6, -7, -10, and -11 are Tract 2 wells and currently warehoused pending site development in that area of the facility.

In order to meet well spacing requirements and extend the point of compliance, monitor wells MW-21, MW-22, MW-23, MW-24, MW-25, MW-26, MW-27, MW-28, and MW-29 will be installed at the facility. In addition, monitor well MW-2, which has not had sufficient water volume for sampling since 1996, will be plugged and abandoned. Monitor well MW-18 will also be plugged and abandoned as monitor well MW-18 sufficiently to monitors this area of the water bearing unit. Data included as Exhibit 8.8 demonstrates the interconnectivity of monitor wells MW-18 and MW-18 and the sufficiency of monitor well MW-18. Four additional wells (MW-4, MW-5, MW-7, and MW-20) will be eliminated as the distances between wells are adjusted to comply with spacing requirements. Plugging and abandonment activities and reporting will be conducted in accordance with applicable regulations.

Installation of monitor wells MW-21, MW-22, MW-23, MW-24, MW-25, and MW-29 and plugging of wells MW-1B, MW-2, MW-4, MW-5, MW-7, and MW-20 will occur within 90 days of final approval of the revised groundwater monitoring system design. Background monitoring for the new wells will commence within 90 days of installation. Installation of wells MW-26, MW-27, and MW-28 and initiation of background monitoring for wells MW-6, MW-10, MW-11, MW-26, MW-27, and MW-28 will commence prior to placement of the first waste in Tract 2 (Exhibit 8.3).

The final system will consist of nineteen wells (wells MW-3, MW-6, MW-10, MW-11, MW-12A, MW-13B, MW-14, MW-15A, MW-15B, MW-18, MW-21, MW-22, MW-23, MW-24, MW-25, MW-26, MW-27, MW-28, and MW-29). All wells will be constructed according to the specifications outlined in 30 TAC §330.421. Typical monitor well construction specifications are included as Exhibit 8.3.13. A map showing the locations of waste disposal areas and monitor well locations is included as Exhibit 8.3. The groundwater monitoring system installation will be certified by a qualified groundwater scientist as defined in 30 TAC §330.3 following installation of Tract 1 monitor wells (MW-21, MW-22, MW-23, MW-24, MW-25, and MW-29) and Tract 2 monitor wells (MW-27, and MW-28).

The following table summarizes the groundwater monitoring system for Angelina County Waste Management Center. The current groundwater monitoring system is summarized on the following table:

	Proposed Monitoring System				
Well/ Piezometer	Lithology Screened	Status	Aquifer	Remarks	
MW-1A	Interbedded Sand-clay	Plugged & Abandoned		Plugged 8-27-96	
MW-1B	Interbedded Sand clay	Existing		Downgradient Tract 1	
MW-2	Silty Sand	Existing		Downgradient Tract 1	
MW-3	Clayey Sand Lean Clay	Existing	uppermost	Downgradient Tract 1	
MW-4	Clayey Sand	Existing		Downgradient Tract 1	
MW-5	Glayey Sand, Clay-Sand	Existing	uppermost	Downgradient Tract 1	
MW-6	Interbedded Clay-Sand	Existing	uppermost	Warehouse	
MW-7	Interbedded Clay Sand	Existing		Werchouse	
MW-8	Interbedded Clay-Sand	Plugged & Abandoned		Plugged 8-27-96	
MW 9	Silty Sand	Plugged & Abandoned		Plugged 8-27-96	
MW-10	Interbedded Glay Sand	Existing	uppermost	Warehouse	
MW-11	Silty Sand - Clayey Sand	Existing	uppermost	Warehouse	
MW-12A	Interbedded Clay-Sand	Existing	uppermost	Downgradient Tract 1	
MW-12B	Fine Sand (SP)	Plugged & Abandoned		Plugged 8-27-96	
MW-13A	Clayey Sand	Plugged & Abandoned		Plugged 8 27-96	
MW-13B	Interbedded Clay-Sand	Existing	uppermost	Downgradient Tract 1	
MW-14	Clayey Sand	Existing	uppermost	Upgradient well	
MW-15A	Silty Sand-Lean-Clay	Existing	uppermost	Downgradient Tract 1	
MW-15B	Glayey Sand	Existing		Downgradient Tract 1	
MW-16	Interbedded Clay Sand	Plugged & Abandoned	- 1 F-	Plugged 8-27-96	
MW-17	Clayey Sand	Plugged & Abandoned		Plugged 8-27-96	
MW-18	Silty Sand - Clayey Sand	Existing		Installed 8-26-96	
MW-19	Interbedded Clay-Sand	To be drilled	741	Replacement for MW-9	
MW-20	Silty Sand	Existing	14, 18	Installed 8-26-36	

Table 5-1

Well ID	Ground Surface Elevation (MSL)	Well Depth (feet BGS)		Screened Interval (feet)		4.50
Well ID		Depth (feet BGS)	Elevation (MSL)	Depth (feet BGS)	Elevation (MSL)	<u>Remarks</u>
MW-3	277.0	<u>33</u>	<u>244</u>	12 - 32	265.0 - 245.0	POC well downgradient of Tract 1
<u>MW-6</u>	268.8	27	241.8	<u>16 - 26</u>	252.8 - 242.8	POC well downgradient of Tract 2
MW-10	272.9	<u>35</u>	237.9	19 - 34	253.9 - 238.9	Upgradient Well
<u>MW-11</u>	272.5	<u>21</u>	<u>251.5</u>	10 - 20	262.5 - 252.5	Upgradient Well
MW-12A	290.5	<u>26</u>	264.5	10 - 25	280.5 - 265.5	POC well downgradient of Tract 1
<u>MW-13B</u>	304.1	47	257.1	26 - 46	278.1 - 258.1	POC well downgradient of Tract 1
MW-14	307.3	33	274.3	17 - 32	290.3 - 275.3	Upgradient Well
MW-15A	310.5	42	268.5	<u>26 - 41</u>	284.5 - 269.5	POC well downgradient of Tract 1
MW-15B	310.5	64	246.5	48 - 63	262.5 - 247.5	POC well downgradient of Tract 1
MW-18	319.7	<u>55</u>	264.7	44 - 54	275.7 - 265.7	POC well downgradient of Tract 1
MW-21*	300	<u>40</u>	<u>260</u>	30 - 40	250 - 260	POC well downgradient of Tract 1
MW-22*	282	<u>40</u>	242	30 - 40	232 - 242	POC well downgradient of Tract 1
MW-23*	274	<u>35</u>	239	25 - 35	229 - 239	POC well downgradient of Tract 1
MW-24*	272	<u>35</u>	237	<u>25 - 35</u>	227 - 237	POC well downgradient of Tract 1
MW-25*	275	<u>35</u>	240	<u>25 - 35</u>	230 - 240	POC well downgradient of Tract 1 and 2
MW-26*	263	<u>30</u>	233	20 - 30	223 - 233	POC well downgradient of Tract 2
MW-27*	<u>260</u>	<u>35</u>	225	<u>25 - 35</u>	215 - 225	POC well downgradient of Tract 2
MW-28*	265	<u>35</u>	230	25 - 35	220 - 230	POC well downgradient of Tract 2
MW-1B	<u>319.5</u>	<u>81</u>	238.5	60 - 80	259.5 - 239.5	Plug and Abandon
MW-2	287.6	<u>15</u>	272.6	4-14	283.6 - 273.6	Plug and Abandon
MW-4	269.7	<u>31</u>	238.7	10 - 30	259.7 - 239.7	Plug and Abandon
MW-5	<u>275.5</u>	<u>33</u>	242.5	13 - 32	263.5 - 243.5	Plug and Abandon
MW-7	262.2	<u>26</u>	236.2	10 - 25	252.2 - 237.2	Plug and Abandon
MW-20	281	<u>20</u>	<u>261</u>	<u>9 - 19</u>	272.0 - 262.0	Plug and Abandon
MW-CA1	302.2	45.5	256.7	35 - 45	266.7 - 256.7	Corrective Action Well

From September 1992 to January 1994, four samples were collected and analyzed for TNRCC parameters Groups 1 through 4. Of the hazardous constituents listed in Table I of TAC 330.200, five (barium, nitrate, fluoride, cadmium, and mercury,) were reported as detectable in the groundwater monitoring events.

Nitrate was detected in several of the wells during past monitoring events. Concentrations ranged up to 0.9 mg/L, which is significantly lower than the MCL of 10 mg/L. The nitrate concentrations are not considered to result from a release of contaminants from the facility.

During past monitoring events, all monitor wells have been reported to contain detectable concentrations of barium. Barium was reported in concentrations up to 0.9 mg/L. No barium was detected in excess of the 1.0 mg/L MCL for the metal. The reported barium levels are assumed to represent naturally occurring background at the site.

Fluoride was detected in concentrations up to 1.4 mg/L. Laboratory reports indicate that the detectable fluoride is relatively consistent with respect to concentration and occurrence. No fluoride was reported in excess of the MCL of 4.0 mg/L. These low levels of fluoride are assumed to represent naturally occurring background concentrations.

Mercury greater than or equal to the MCL of 0.002 mg/L was reported for five wells (MW-1, MW-5, MW-7, MW-8, and MW-14). Cadmium greater than or equal to the MCL of 0.01 mg/L was reported for two wells (MW-14 and MW-15A). None of the wells were reported to contain elevated concentrations of mercury for all four monitoring events. A single well, MW-15A, was reported to contain cadmium equal to or exceeding the MCL for all four events. Exhibit 8.4 shows reported concentrations and MCLs for the two parameters. Exhibit 8.5 summarizes the reported elevated occurrences of mercury and cadmium.

A review of the analytical reports and laboratory Quality Assurance/Quality Control data suggests that reported values for cadmium and mercury are suspect. Exhibit 8.6 summarizes relevant QA/QC data for each respective sampling event. The ranges of recovery, many of which exceed the accepted variance of 10%, are taken from laboratory QA/QC reports for those samples reported to contain elevated mercury or cadmium. In addition, the field blank for the monitoring event on April 1992, was reported to contain 0.001 mg/L mercury. A review of other water quality indicators does not suggest a release of contaminants to the groundwater. Based upon these factors, the validity of the analytical data is questionable.

Monitoring for required background parameters, as set forth in the Groundwater Sampling and Analysis Plan, is expected to be initiated in the second or third quarter of 1995. Previous analytical results will not be used in establishing background values of any parameters. Collection of background under Subtitle D was performed between February 1996 and August 1998. Background monitoring was completed for monitor wells MW-1B, -3, -4, -5, -12A, -13B, -14, -15A, and -15B in November 1997 and for monitor wells MW-18 and -20 in August 1998. Monitor well MW-2 repeatedly demonstrates insufficient water for sampling. Therefore, background for volatile organic compounds (VOCs) in MW-2 was not completed until May 2005 and background monitoring for the remaining detection monitoring list has not been completed. As with presubtitle D monitoring (Exhibit 8.1), Subtitle D background monitoring results indicate the presence of numerous dissolved metals in wells of the current monitoring system. Dissolved metals reported for background monitoring events included arsenic, barium, cadmium, chromium, nickel, and selenium. Monitor well MW-18 was the only monitoring well that did not report concentrations of dissolved metals above their respective reporting limit. Concentrations of nitrate were reported for all wells of the current monitoring system

during background monitoring. All concentrations of nitrate reported during background monitoring were less than 1 mg/L. No VOCs were reported for any well during background monitoring activities. Results of Subtitle D background and detection monitoring are included as pages III-5-28-1 through III-5-28-71 in Exhibit 8.1

Subsequent to completion of background monitoring, detection monitoring has been conducted on a semiannual basis for the parameters listed in the facility's GWSAP. Statistical analysis of the data collected during the detection monitoring events is performed in accordance with the GWSAP and applicable regulations. Statistical analysis has reported numerous statistically significant changes (SSCs) and/or statistically significant increases (SSIs) in concentration for various constituents during detection monitoring. Where an SSI is indicated, assessment monitoring or an Alternate Source Demonstration (ASD) may be required. A discussion of SSIs reported for detection monitoring results that resulted in assessment monitoring or an ASD is presented below. The SSIs are addressed on a per well basis.

Monitor Well MW-13B

The results of the November 1998 detection monitoring event reported cis-1,2-dichloroethylene in monitor well MW-13B at a concentration of 12.8 µg/L. Verification resampling confirmed the reported concentration and assessment monitoring for MW-13B was initiated February 1999. The assessment monitoring included sampling and analysis for the complete list of constituents found in Appendix II of 40 CFR part 258 (assessment constituents) and those listed on the facility's approved alternative detection monitoring list. The results of the assessment monitoring reported no new assessment constituents. Subsequent TNRCC correspondence approved assessment monitoring for detection monitoring constituents on a semiannual basis. Monitor well MW-13B remained in assessment monitoring until a statistical exceedance of the groundwater protection standard (GWPS) was reported for VOCs for the June 2004 monitoring event. The exceedance of the GWPS initiated corrective action monitoring for well MW-13B. The TCEQ was notified of the exceedance and the initiation of corrective action monitoring for well MW-13B in correspondence dated July 29, 2004. In accordance with applicable regulation, installation of a monitoring well in the direction of potential contaminant migration was required. Pursuant to this requirement, MW-CA1 was installed on August 19, 2004. The well was subsequently sampled for assessment constituents during September 2004. Assessment monitoring of MW-CA1 reported no concentrations of VOCs above their respective reporting limits. Documentation referencing the installation details for MW-CA1 was forwarded to the TCEQ on September 14, 2004.

Following completion of the assessment of corrective measures a report titled *Report on Assessment of Corrective Measures and Selection of Remedy* was forwarded to the TCEQ. This report, dated March 23, 2005, indicated that landfill gas was the likely source of the VOCs reported for MW-13B. Additionally, the report detailed a remedy that included the installation of a passive vent trench system to interrupt the landfill gas migration in the area of MW-13B. The remedy was approved in TCEQ correspondence dated May 13, 2005. Subsequently, necessary permit modifications to allow the installation of the trench system and an additional gas monitoring probe were approved by the TCEQ. Following approval of the remedy, VOCs reported for MW-13B have diminished to a single compound (cis-1,2-dichloroethylene) with concentrations currently at or below the reporting limit (5 µg/L). Additionally, it should be noted that VOCs have not been detected in MW-CA1 for any monitoring event.

Monitor Well MW-20

The results of the June 2004 monitoring event for MW-20 reported nitrate at a concentration of 0.67 mg/L. Statistical analyses demonstrated an apparent SSI for this constituent for the June 2004 event. On June 29, 2004 the TCEQ was notified of an SSI for nitrate concentrations in monitor well MW-20. Following verification of the reported value, an ASD was prepared for the reported SSI. The ASD was

approved in TCEQ correspondence dated November 23, 2004. Based on the TCEQ correspondence monitor well MW-20 remained in detection monitoring.

Monitor Well MW-14

Upgradient monitor well MW-14 reported 1,1-dichloroethane at a concentration of 6.10 µg/L for the November 2005 monitoring event. Verification resampling performed during January 2006 did not confirm the reported value. During the next monitoring event (May 2006), well MW-14 again reported 1,1-dichloroethane at a concentration of 6.78 µg/L. Verification resampling performed during August 2006 confirmed the reported value. Based on TCEQ correspondence, MW-14 was sampled for the full list of assessment constituents during December of 2006. Mercury was the only assessment list constituent detected for the monitoring event. In accordance with applicable regulations, background sampling for mercury was performed. Mercury is currently sampled concurrent with regularly scheduled monitoring events. 1,1-Dichloroethane has been sporadically reported since the initial detection and is likely associated with landfill gas migration.

Other SSIs

Dissolved metals including arsenic, barium, cadmium, chromium, nickel, and selenium have been consistently reported at detectable concentrations during both detection and background monitoring. In correspondence dated March 12, 1999 the TNRCC requested a discussion of elevated cadmium concentrations reported for monitor wells MW-12A, -14, and -15. In response to this request a report titled Report on Cadmium in Groundwater was forwarded to the TNRCC on May 26, 1999. The report presented documentation of a natural source for cadmium and other metals reported for monitoring wells at the facility. The report described occurrence of lignite in the shallow subsurface. The report further demonstrated how weathering (oxidation) of this naturally occurring lignite can release significant concentrations of metals into the groundwater. Approval of the report was provided in correspondence dated June 28, 1999. As the conditions related to the oxidation of the lignite in the shallow subsurface have not changed, the ASD remains both applicable and relevant to the evaluation of groundwater quality at the facility.

Migration of landfill gas appears to have resulted in detectable VOC concentrations in monitor wells MW-13B and MW-14. Current remediation efforts have reduced the concentrations of these constituents to near non-detect levels. These efforts will continue in accordance with applicable regulatory requirements. In addition, reported concentrations of metals have been shown to be related to naturally occurring sources. Therefore, there is no indication of groundwater contamination at the facility resulting from a release of leachate from the waste cells.

Based upon the information presented herein, there is no evidence that groundwater at Angelina County Waste Management Center has been impacted by a release of contaminants.

The following exhibits are included as part of this Groundwater Characterization Report:

EXHIBIT No.

8.1 Historica	I Groundwater Data	III-5-9
	phic Map showing ACWMC Permit Boundary	
8.3 Site Map	Showing Proposed Groundwater Monitoring System	
of ACWN	MC showing Location of Monitor Wells	III-5-30
8.3.1.1	Groundwater Contour Map, Uppermost Aquifer, 02/07/1996 Water Levels	
8.3.1.2	Groundwater Contour Map, Uppermost Aquifer, 05/09/1996 Water Levels	III-5-30B
8.3.1.3	Groundwater Contour Map, Uppermost Aquifer, 08/12/1996 Water Levels	
8.3.1.4	Groundwater Contour Map, Uppermost Aquifer, 11/07/1996 Water Levels	
8.3.2.1	Groundwater Contour Map, Uppermost Aquifer, 02/05/1997 Water Levels	
8.3.2.2	Groundwater Contour Map, Uppermost Aquifer, 05/07/1997 Water Levels	III-5-30F
8.3.2.3	Groundwater Contour Map, Uppermost Aquifer, 08/04/1997 Water Levels	III-5-30G
8.3.2.4	Groundwater Contour Map, Uppermost Aquifer, 11/10/1997 Water Levels	III-5-30H
8.3.3.1	Groundwater Contour Map, Uppermost Aquifer, 05/05/1998 Water Levels	
8.3.3.2	Groundwater Contour Map, Uppermost Aquifer, 11/09/1998 Water Levels	III-5-30J
8.3.4.1	Groundwater Contour Map, Uppermost Aquifer, 05/05/1999 Water Levels	III-5-30K
8.3.4.2	Groundwater Contour Map, Uppermost Aquifer, 10/20/1999 Water Levels	III-5-30L
8.3.4.3	Groundwater Contour Map, Uppermost Aquifer, 11/02/1999 Water Levels	III-5-30M
<u>8.3.5.1</u>	Groundwater Contour Map, Uppermost Aquifer, 04/04/2000 Water Levels	III-5-30N
<u>8.3.5.2</u>	Groundwater Contour Map, Uppermost Aquifer, 05/09/2000 Water Levels	III-5-30O
8.3.5.3	Groundwater Contour Map, Uppermost Aquifer, 10/25/2000 Water Levels	III-5-30P
<u>8.3.5.4</u>	Groundwater Contour Map, Uppermost Aquifer, 11/06/2000 Water Levels	III-5-30Q
<u>8.3.6.1</u>	Groundwater Contour Map, Uppermost Aquifer, 04/19/2001 Water Levels	III-5-30R
8.3.6.2	Groundwater Contour Map, Uppermost Aquifer, 05/08/2001 Water Levels	III-5-30S
<u>8.3.6.3</u>	Groundwater Contour Map, Uppermost Aquifer, 10/08/2001 Water Levels	III-5-30T
8.3.6.4	Groundwater Contour Map, Uppermost Aquifer, 11/13/2001 Water Levels	III-5-30U
<u>8.3.7.1</u>	Groundwater Contour Map, Uppermost Aquifer, 04/02/2002 Water Levels	III-5-30V
8.3.7.2	Groundwater Contour Map, Uppermost Aquifer, 05/13/2002 Water Levels	III-5-30W
8.3.7.3	Groundwater Contour Map, Uppermost Aquifer, 10/10/2002 Water Levels	III-5-30X
<u>8.3.7.4</u>	Groundwater Contour Map, Uppermost Aquifer, 11/05/2002 Water Levels	III-5-30Y
8.3.8.1	Groundwater Contour Map, Uppermost Aquifer, 05/07/2003 Water Levels	<u>III-5-30Z</u>
8.3.8.2	Groundwater Contour Map, Uppermost Aquifer, 05/20/2003 Water Levels	III-5-30AA
8.3.8.3	Groundwater Contour Map, Uppermost Aquifer, 11/10/2003 Water Levels	III-5-30AB
8.3.8.4	Groundwater Contour Map, Uppermost Aquifer, 11/26/2003 Water Levels	III-5-30AC
8.3.9.1	Groundwater Contour Map, Uppermost Aquifer, 05/03/2004 Water Levels	III-5-30AD
<u>8.3.9.2</u>	Groundwater Contour Map, Uppermost Aquifer, 06/01/2004 Water Levels	III-5-30AE
<u>8.3.9.3</u>	Groundwater Contour Map, Uppermost Aquifer, 09/07/2004 Water Levels	III-5-30AF
<u>8.3.9.4</u>	Groundwater Contour Map, Uppermost Aquifer, 11/08/2004 Water Levels	III-5-30AG
<u>8.3.9.5</u>	Groundwater Contour Map, Uppermost Aquifer, 11/10/2004 Water Levels	III-5-30AH
8.3.10.1	Groundwater Contour Map, Uppermost Aquifer, 05/02/2005 Water Levels	III-5-30AI
8.3.10.2	Groundwater Contour Map, Uppermost Aquifer, 05/26/2005 Water Levels	
<u>8.3.10.3</u>	Groundwater Contour Map, Uppermost Aquifer, 11/03/2005 Water Levels	
8.3.10.4	Groundwater Contour Map, Uppermost Aquifer, 11/07/2005 Water Levels	III-5-30AL

8.3.11.1	Groundwater Contour Map, Uppermost Aquifer, 01/03/2006 Water Levels III-5-30AM
8.3.11.2	Groundwater Contour Map, Uppermost Aquifer, 05/31/2006 Water Levels III-5-30AN
8.3.11.3	Groundwater Contour Map, Uppermost Aquifer, 06/29/2006 Water Levels III-5-30AO
8.3.11.4	Groundwater Contour Map, Uppermost Aquifer, 08/14/2006 Water Levels III-5-30AP
8.3.11.5	Groundwater Contour Map, Uppermost Aquifer, 11/07/2006 Water Levels III-5-30AQ
8.3.11.6	Groundwater Contour Map, Uppermost Aquifer, 11/09/2006 Water Levels III-5-30AR
8.3.12.1	Groundwater Contour Map, Uppermost Aquifer, 02/14/2007 Water Levels III-5-30AS
8.3.12.2	Groundwater Contour Map, Uppermost Aquifer, 05/02/2007 Water Levels III-5-30AT
8.3.12.3	Groundwater Contour Map, Uppermost Aquifer, 07/05/2007 Water Levels III-5-30AU
8.3.12.4	Groundwater Contour Map, Uppermost Aquifer, 08/27/2007 Water Levels III-5-30AV
8.3.12.5	Groundwater Contour Map, Uppermost Aquifer, 11/07/2007 Water Levels III-5-30AW
8.3.13	Monitor Well Construction Details III-5-30AX
8.4	Cadmium and Mercury in Ground Water III-5-31
8.5	Summary of Detected Cadmium and Mercury in Groundwater III-5-32
8.6	Range of Standard, Duplicate, & Spike Recovery (%) III-5-33
8.7	Tabulation of Water Level Measurements
8.8	Demonstration of Interconnectivity Between Wells MW-1B and MW-18

NO ALL
259.08 259.10 257.44 278.63 275.03 280.68 275.54 273.14 271.92 266.64 272.14
259.60 259.67 279.21 275.04 275.04 275.04 275.01 275.01 273.51 272.34 266.24
257.97 274.98 277.99 276.20 276.20 276.20 277.46 272.45 272.48
251.83 257.14 278.74 274.38 275.96 275.96 272.07 272.07
258.47 258.47 277.96 274.69 281.16 275.98 273.37 272.08
258.25 256.20 277.97 274.48 281.09 275.97 273.31 272.02 266.48
268.68 256.95 278.23 274.51 281.04 275.97 273.27 272.01 272.03
258.07 258.60 256.87 278.57 274.80 276.25 273.49 272.18 266.95
256.30 256.92 276.92 274.50 277.78 277.70 277.70
270.08 259.66 279.56 274.45 274.45 2775.68 2775.88 277.88 271.57 268.48
270.22 260.09 273.99 273.99 277.98 277.61 277.31
271.03 258.83 279.57 274.38 275.78 277.74 269.10
270.49 260.24 258.60 279.60 274.31 275.91 275.91 272.90 269.04
259.15 259.15 257.27 273.41 280.25 274.38 277.38 277.38
259.71 259.71 258.14 273.50 273.50 280.35 2772.45 2772.45 2771.16
270.21 260.23 257.57 273.48 280.69 275.71 275.71 269.02
MW-12A MW-12A MW-13B MW-14A MW-15B MW-16B MW-20 MW-20

8.8 Demonstration of Interconnectivity Between Wells MW-1B and MW-18

As described in the *Initial Groundwater Characterization Report* (Attachment 9.1), the uppermost groundwater bearing zone is made up of a number of hydraulically connected channel sands incised by other channel sands. Interbedded silty sand and clay units flanking the channel sands lessen hydraulic connectivity between water bearing units in both vertical and lateral directions. Although the interbedded silty sand and clay units limit flow between the sand bodies, distinct evidence of interconnectivity remains. Water levels in monitor wells installed in close proximity, such as wells MW-1B and MW-18, demonstrate the interconnectivity of vertically separated channel sands. Comparisons of historical water level data for monitor wells MW-1B and MW-18 show pronounced correlation between changes in water levels during successive events since 1999.

In order to demonstrate the interconnectivity of monitor wells MW-1B and MW-18 an evaluation of water levels was performed. Regression analysis of water levels from monitor wells MW-1B and MW-18 produced a correlation coefficient (r-squared value) of 0.9849. Based on their limited separation, the calculated r-squared value indicates excellent interconnectivity between the two wells. Additionally, the change in water level for successive monitoring events for each well was calculated. Regression analysis of the resulting values for wells MW-1B and MW-18 yielded an r-squared value of 0.9370 with a geometric mean of 0.0992 feet, further demonstrating the interconnectivity of the two closely spaced wells. The following graph illustrates the correlation of the water level measurements.

Additionally, parallels with respect to analytical data further indicate the wells monitor the same zone. The following graphs illustrate the correlation of analytical results from multiple sampling events.

Both the water level and analytical data demonstrate the interconnected nature of these two monitor wells. As the wells monitor the same groundwater bearing unit and are approximately 11 feet apart only one well is necessary to monitor this portion of the point of compliance. Therefore, monitor well MW-1A will be plugged and abandoned and monitor MW-18 will remain part of the point of compliance monitoring system. Data used for this demonstration are included in Exhibits 8.1 and 8.7.

Appendix No.

9.1 INITIAL GROUND-WATER CHARACTERIZATION REPORT 111-5-3542

Section 3
Replacement Copy of Attachment 5

ANGELINA COUNTY WASTE MANAGEMENT CENTER ANGELINA COUNTY, TEXAS MSW PERMIT NO. 2105A

PART III - SITE DEVELOPMENT PLAN ATTACHMENT 5 GROUNDWATER CHARACTERIZATION REPORT

Modification
FOR COMPLIANCE WITH 30 TAC CHAPTER 330 SUBCHAPTER J

Prepared for:

Angelina County Waste Management Center P.O. Box 1862
Lufkin, TX 75902-1862

February 2010

Glen A. Collier, P. G.

Senior Hydrogeologist

Leonell N. Scarborough, P.G.
Hydrogeologist

Hydrex Environmental, Inc. 1120 NW Stallings Drive Nacogdoches, Texas 75964

Certification of Groundwater Monitoring System Design

Angelina County Waste Management Center MSW Permit No. 2105A Angelina County, Texas

I certify that the design of the groundwater monitoring system described herein meets the requirements of 30 TAC §330.403 and has been prepared based on facility boundaries as determined during telephone conversations on February 15, 2010 (documented in TCEQ correspondence dated February 17, 2010). I further certify that I am a qualified groundwater scientist as defined in 30 TAC §330.3.

Leonell N. Scarborough, F.G.
Hydrogeologist

GEOLOGY #10048

Date

ANGELINA COUNTY WASTE MANAGEMENT CENTER TYPE I SANITARY LANDFILL ANGELINA COUNTY, TEXAS MSW PERMIT NO. 2105A

PART III - SITE DEVELOPMENT PLAN ATTACHMENT 5 GROUND-WATER CHARACTERIZATION REPORT

SEPTEMBER 12, 1996

REVISED February 2010

Applicant:

Angelina County Waste Management Center P.O. Box 1862 Lufkin, Texas 75902-1862

Prepared by:

Hydrex Environmental, Inc. 1120 NW Stallings Drive Nacogdoches, Texas 75964

This document is issued for permit review purposes only. It is not intended for construction or bidding purposes.

TABLE OF CONTENTS

SECTION	PAGE
1 INTROD	DUCTION III-5-1
2 HISTOR	IIC GROUNDWATER MONITORING DATA
3 SITE HY	'DROGEOLOGICAL CONDITIONS
4 MAPS .	······································
5 GROUN Table 5-	DWATER MONITORING SYSTEM
6 GROUN	DWATER PROGRAM
7 HISTOR	ICAL GROUNDWATER ANALYSIS III-5-7
8 EXHIBIT 8.1 8.2 8.3 8.3.1.1 8.3.1.2 8.3.1.3 8.3.1.4 8.3.2.2 8.3.2.3 8.3.2.4 8.3.3.1 8.3.2.2 8.3.4.1 8.3.4.2 8.3.4.3 8.3.5.1 8.3.5.2 8.3.5.3 8.3.5.4 8.3.6.1 8.3.6.2 8.3.6.3 8.3.6.4 8.3.7.1 8.3.7.2 8.3.7.3 8.3.7.4	
8,3.8.1 8.3.8.2 8.3.8.3 8.3.8.4 8.3.9.1	Groundwater Contour Map, Uppermost Aquifer, 05/07/2003 Water Levels III-5-30Z Groundwater Contour Map, Uppermost Aquifer, 05/20/2003 Water Levels III-5-30AA Groundwater Contour Map, Uppermost Aquifer, 11/10/2003 Water Levels III-5-30AB Groundwater Contour Map, Uppermost Aquifer, 11/26/2003 Water Levels III-5-30AC Groundwater Contour Map, Uppermost Aquifer, 05/03/2004 Water Levels III-5-30AD
8.3.9.2	Groundwater Contour Map, Uppermost Aquifer, 06/01/2004 Water Levels III-5-30AE

ACWMC SEPTEMBER 12, 1996 REVISED MARCH 2008; February 2010

	8.3.9.3	Groundwater Contour Map, Uppermost Aquifer, 09/07/2004 Water Levels III-5-30AF
	8.3.9.4	Groundwater Contour Map, Uppermost Aquifer, 11/08/2004 Water Levels III-5-30AG
	8.3.9.5	Groundwater Contour Map, Uppermost Aquifer, 11/10/2004 Water Levels III-5-30AH
	8.3.10.1	Groundwater Contour Map, Uppermost Aquifer, 05/02/2005 Water Levels III-5-30Al
	8.3.10.2	Groundwater Contour Map, Uppermost Aquifer, 05/26/2005 Water Levels III-5-30AJ
	8.3.10.3	Groundwater Contour Map, Uppermost Aquifer, 11/03/2005 Water Levels III-5-30AK
	8.3.10.4	Groundwater Contour Map, Uppermost Aquifer, 11/07/2005 Water Levels III-5-30AL
	8.3.11.1	Groundwater Contour Map, Uppermost Aquifer, 01/03/2006 Water Levels III-5-30AM
	8.3.11.2	Groundwater Contour Map, Uppermost Aquifer, 05/31/2006 Water Levels III-5-30AN
	8.3.11.3	Groundwater Contour Map, Uppermost Aquifer, 06/29/2006 Water Levels III-5-30AO
	8.3.11.4	Groundwater Contour Map, Uppermost Aquifer, 08/14/2006 Water Levels III-5-30AP
	8.3.11.5	Groundwater Contour Map, Uppermost Aquifer, 11/07/2006 Water Levels III-5-30AQ
	8.3.11.6	Groundwater Contour Map, Uppermost Aquifer, 11/09/2006 Water Levels III-5-30AR
	8.3.12.1	Groundwater Contour Map, Uppermost Aquifer, 02/14/2007 Water Levels III-5-30AS
	8.3.12.2	Groundwater Contour Map, Uppermost Aquifer, 05/02/2007 Water Levels III-5-30AT
	8.3.12.3	Groundwater Contour Map, Uppermost Aquifer, 07/05/2007 Water Levels III-5-30AU
	8.3.12.4	Groundwater Contour Map, Uppermost Aquifer, 08/27/2007 Water Levels III-5-30AV
	8.3.12.5	Groundwater Contour Map, Uppermost Aquifer, 11/07/2007 Water Levels III-5-30AW
	8.3.13	Monitor Well Construction Details
	8.4	Cadmium and Mercury in Groundwater III-5-31
	8.5	Summary of Detected Cadmium and Mercury in Groundwater III-5-32
	8.6	Range of Standard, Duplicate, & Spike Recovery (%) III-5-33
	8.7	Tabulation of Water Level Measurements III-5-34
	8.8	Demonstration of Interconnectivity Between Wells MW-1B and MW-18 III-5-35
9	APPENDI	ICES
•	9.1	Initial Groundwater Characterization Report
		The second secon

Hydrex Environmental, Inc. has been contracted by Angelina County Waste Management Center to provide a groundwater characterization report for the landfill site of the Angelina County Waste Management Center.

This Groundwater Characterization Report is based on a historical review of previous investigations and groundwater monitoring activities at the site. Previous studies that provide the basis of the information presented herein include:

- Groundwater Monitoring Reports and Laboratory Analytical Reports (monitoring conducted September 1992 through November 2007.
- Report of Monitor Well Installation, Angelina County Landfill, 114.5-Acre Tract; Pickett-Jacobs Consultants, Inc.; May 26, 1992.
- Supplement No. 1 to Monitor Well Installation, Angelina County Waste Management Center, 114.5-Acre Tract; Pickett-Jacobs Consultants, Inc.; November 2, 1994.
- Supplement No. 2 to Monitor Well Installation, Angelina County Waste Management Center, 114.5-Acre Tract; Pickett-Jacobs Consultants, Inc.; February 24, 1995.
- Initial Groundwater Characterization Report, Angelina County Waste Management Center, 114.5-Acre Tract;
 Hydrex Environmental, Inc.; December 1, 1995.
- Report on Cadmium in Groundwater, Angelina County Waste Management Center, Hydrex Environmental, Inc.; May 26, 1999.
- Applicability of a May 26, 1999 Alternate Source Demonstration (ASD) for Metals in Groundwater, Angelina County Waste Management Center, December 5, 2007.

Previous groundwater monitoring at the Angelina County Waste Management Center consisted of quarterly sampling and analysis of all monitoring wells for TNRCC parameters Groups 1 through 4. Exhibit 8.1 includes a tabulation of the results of all previous laboratory testing of groundwater at the site.

Background monitoring for Subtitle D parameters was initiated in February 1996. Eight samples were collected and analyzed quarterly over a two year period to establish background values for the required parameters. The last of eight background monitoring events for the first wells installed was conducted in November 1997. Since that time, detection monitoring has been on-going on a semiannual basis.

Results of background and detection monitoring events through November 2007 from wells at Angelina County Waste Management Center are tabulated on pages III-5-28-1 through III-5-28-71in Exhibit 8.1.

One near-surface water-bearing system has been identified at the site. This system occurs within sands and clayey sands of the Yegua Formation. A detailed discussion of site groundwater conditions is provided in Attachment 4, Geological Report, Section 6.3 and in Appendix 9.1 of this attachment.

The uppermost water-bearing unit at the site consists of locally continuous sand bodies bounded by finer grained silt and clay facies. The sand bodies typically do not exceed a thickness of 10 feet. Marginal to the primary silty sand and clayey sand bodies the lithologies are dominated by interbedded silty sand and clay. These thin interbeds are the conduit for communication between the primary sands. This premise is supported by the observation that monitor wells which are completed in interbedded silty sand and clay bodies located marginal to the primary sands have similar water level elevations as those completed in the primary sand bodies. Examples include monitor wells MW-10 and MW-11. Similarly, monitor wells completed in sands which are vertically separated have similar water levels, such as monitor wells MW-7 and MW-8. As a result of the channel-fill nature of the sands, the possibility exists that the individual channels are in contact where meandering channels were deposited on, or incised into older deposits.

Deeper bodies of silty sand and clayey sand are often under confined conditions due to the presence of organic silts and clays which can form a locally confining unit. The lower confining bed of the uppermost aquifer is a hard gray clay with sand seams which underlies the silty sand and clayey sand of the deeper, locally confined zones.

At the site, flow in the uppermost aquifer is to the north-northeast except at the southwestern end of the site where the flow direction is to the southwest (Attachment 4, Exhibit 4-13).

The Darcy equation, stated below, relates groundwater velocity, V, to effective porosity, N_e , hydraulic gradient, I, and hydraulic conductivity, K.

$$V = (K \times I) \div N_o$$

Hydraulic gradient was obtained from calculations and a groundwater contour map constructed for the uppermost water-bearing zone (Exhibit 4-13). The average of these values was given to be 0.014 ft/ft.

Groundwater beneath the site is primarily found in clayey sand (SC) deposits and in silty sand (SM) layers within fat clay (CH). Recognized values for effective porosity are 1% for clay (CL, CH) and 20% for sand (SM, SC).

$$V = (1.0^{-8} \times 0.014 \text{ ft/ft}) \div 0.01 = 3.98 \times 10^{-5} \text{ ft/day (clay)}$$

 $V = (1.0^{-6} \times 0.014 \text{ ft/ft}) \div 0.20 = 1.99 \times 10^{-4} \text{ ft/day (sand)}$

Based upon these values, the horizontal component of linear velocity of groundwater is expected to range from 3.98×10^{-5} ft/day in the clay to 1.99×10^{-4} ft/day in the sand bodies.

A delineation of the Angelina County Waste Management Center property boundary is shown on Exhibit 8.2. The site point of compliance and groundwater monitoring system are presented on Exhibit 8.3. A potentiometric surface map of the uppermost water-bearing zone, which reflects conditions in November 1995, is found as Exhibit 4-13 in Attachment 4.

Groundwater contour maps of the uppermost aquifer are found as Exhibit 8.3.1.1 through 8.3.12.5. Tabulated water level measurements are found as Exhibit 8.7.

Groundwater conditions for Angelina County Waste Management Center are described in detail in the Initial Groundwater Characterization Report, Angelina County Waste Management Center; Hydrex Environmental, Inc.; December 1, 1995, which is included as Appendix 9.1 of Attachment 5.

The current certified groundwater monitoring system for the site consists of monitor wells MW-1B, MW-2, MW-3, MW-4, MW-5, MW-6, MW-7, MW-10, MW-11, MW-12A, MW-13B, MW-14, MW-15A, MW-15B, MW-18, and MW-20. Monitor wells MW-6, -7, -10, and -11 are Tract 2 wells and currently warehoused pending site development in that area of the facility.

In order to meet well spacing requirements and extend the point of compliance, monitor wells MW-21, MW-22, MW-23, MW-24, MW-25, MW-26, MW-27, MW-28, and MW-29 will be installed at the facility. In addition, monitor well MW-2, which has not had sufficient water volume for sampling since 1996, will be plugged and abandoned. Monitor well MW-1B will also be plugged and abandoned as monitor well MW-18 sufficiently to monitors this area of the water bearing unit. Data included as Exhibit 8.8 demonstrates the interconnectivity of monitor wells MW-1B and MW-18 and the sufficiency of monitor well MW-18. Four additional wells (MW-4, MW-5, MW-7, and MW-20) will be eliminated as the distances between wells are adjusted to comply with spacing requirements. Plugging and abandonment activities and reporting will be conducted in accordance with applicable regulations.

Installation of monitor wells MW-21, MW-22, MW-23, MW-24, MW-25, and MW-29 and plugging of wells MW-1B, MW-2, MW-4, MW-5, MW-7, and MW-20 will occur within 90 days of final approval of the revised groundwater monitoring system design. Background monitoring for the new wells will commence within 90 days of installation. Installation of wells MW-26, MW-27, and MW-28 and initiation of background monitoring for wells MW-6, MW-10, MW-11, MW-26, MW-27, and MW-28 will commence prior to placement of the first waste in Tract 2 (Exhibit 8.3).

The final system will consist of nineteen wells (wells MW-3, MW-6, MW-10, MW-11, MW-12A, MW-13B, MW-14, MW-15A, MW-15B, MW-18, MW-21, MW-22, MW-23, MW-24, MW-25, MW-26, MW-27, MW-28, and MW-29). All wells will be constructed according to the specifications outlined in 30 TAC §330.421. Typical monitor well construction specifications are included as Exhibit 8.3.13. A map showing the locations of waste disposal areas and monitor well locations is included as Exhibit 8.3. The groundwater monitoring system installation will be certified by a qualified groundwater scientist as defined in 30 TAC §330.3 following installation of Tract 1 monitor wells (MW-21, MW-22, MW-23, MW-24, MW-25, and MW-29) and Tract 2 monitor wells (MW-26, MW-27, and MW-28).

The following table summarizes the groundwater monitoring system for Angelina County Waste Management Center.

Table 5-1

		(Groundwater Mo	nitoring Well Des	ign Summary		
Marin des	Ground Surface	Well Depth (feet BGS)		Screened Interval (feet)			
Well ID	Elevation (MSL)	Depth (feet BGS)	Elevation (MSL)	Depth (feet BGS)	Elevation (MSL)	Remarks	
MW-3	277.0	33	244	12 - 32	265.0 - 245.0	POC well downgradient of Tract 1	
MW-6	268.8	27	241.8	16 - 26	252.8 - 242.8	POC well downgradient of Tract 2	
MW-10	272.9	35	237.9	19 - 34	253.9 - 238.9	Upgradient Well	
MW-11	272.5	21	251.5	10 - 20	262.5 - 252.5	Upgradient Well	
MW-12A	290.5	26	264.5	10 - 25	280.5 - 265.5	POC well downgradient of Tract 1	
MW-13B	304.1	47	257.1	26 - 46	278.1 - 258.1	POC well downgradient of Tract 1	
MW-14	307.3	33	274.3	17 - 32	290.3 - 275.3	Upgradient Well	
MW-15A	310.5	42	268.5	26 - 41	284.5 - 269.5	POC well downgradient of Tract 1	
MW-15B	310.5	64	246.5	48 - 63	262.5 - 247.5	POC well downgradient of Tract 1	
MW-18	319.7	55	264.7	44 - 54	275.7 - 265.7	POC well downgradient of Tract 1	
MW-21*	300	40	260	30 - 40	250 - 260	POC well downgradient of Tract 1	
MW-22*	282	40	242	30 - 40	232 - 242	POC well downgradient of Tract 1	
MW-23*	274	35	239	25 - 35	229 - 239	POC well downgradient of Tract 1	
MW-24*	272	35	237	25 - 35	227 - 237	POC well downgradient of Tract 1	
MW-25*	275	35	240	25 - 35	230 - 240	POC well downgradient of Tract 1 and	
MW-26*	263	30	233	20 - 30	223 - 233	POC well downgradient of Tract 2	
MW-27*	260	35	225	25 - 35	215 - 225	POC well downgradient of Tract 2	
MW-28*	265	35	230	25 - 35	220 - 230	POC well downgradient of Tract 2	
MW-1B	319.5	81	238.5	60 - 80	259.5 - 239.5	Plug and Abandon	
MW-2	287.6	15	272.6	4 - 14	283.6 - 273.6	Plug and Abandon	
MW-4	269.7	31	238.7	10 - 30	259.7 - 239.7	Plug and Abandon	
MW-5	275.5	33	242.5	13 - 32	263.5 - 243,5	Plug and Abandon	
MW-7	262.2	26	236.2	10 - 25	252.2 - 237.2	Plug and Abandon	
MW-20	281	20	261	9 - 19	272.0 - 262.0	Plug and Abandon	
MW-CA1	302.2	45.5	256.7	35 - 45	266.7 - 256.7	Corrective Action Well	

^{*}Wells to be installed; design values are estimates

SECTION 6 - GROUNDWATER MONITORING PROGRAM

A detailed discussion of the groundwater monitoring program is presented as Attachment 11, Groundwater Sampling and Analysis Plan (GWSAP). The GWSAP sets forth sampling, analysis, and statistical comparison procedures for evaluating groundwater monitoring data at the Angelina County Waste Management Center.

From September 1992 to January 1994, four samples were collected and analyzed for TNRCC parameters Groups 1 through 4. Of the hazardous constituents listed in Table I of TAC 330.200, five (barium, nitrate, fluoride, cadmium, and mercury,) were reported as detectable in the groundwater monitoring events.

Nitrate was detected in several of the wells during past monitoring events. Concentrations ranged up to 0.9 mg/L, which is significantly lower than the MCL of 10 mg/L. The nitrate concentrations are not considered to result from a release of contaminants from the facility.

During past monitoring events, all monitor wells have been reported to contain detectable concentrations of barium. Barium was reported in concentrations up to 0.9 mg/L. No barium was detected in excess of the 1.0 mg/L MCL for the metal. The reported barium levels are assumed to represent naturally occurring background at the site.

Fluoride was detected in concentrations up to 1.4 mg/L. Laboratory reports indicate that the detectable fluoride is relatively consistent with respect to concentration and occurrence. No fluoride was reported in excess of the MCL of 4.0 mg/L. These low levels of fluoride are assumed to represent naturally occurring background concentrations.

Mercury greater than or equal to the MCL of 0.002 mg/L was reported for five wells (MW-1, MW-5, MW-7, MW-8, and MW-14). Cadmium greater than or equal to the MCL of 0.01 mg/L was reported for two wells (MW-14 and MW-15A). None of the wells were reported to contain elevated concentrations of mercury for all four monitoring events. A single well, MW-15A, was reported to contain cadmium equal to or exceeding the MCL for all four events. Exhibit 8.4 shows reported concentrations and MCLs for the two parameters. Exhibit 8.5 summarizes the reported elevated occurrences of mercury and cadmium.

A review of the analytical reports and laboratory Quality Assurance/Quality Control data suggests that reported values for cadmium and mercury are suspect. Exhibit 8.6 summarizes relevant QA/QC data for each respective sampling event. The ranges of recovery, many of which exceed the accepted variance of 10%, are taken from laboratory QA/QC reports for those samples reported to contain elevated mercury or cadmium. In addition, the field blank for the monitoring event on April 1992, was reported to contain 0.001 mg/L mercury. A review of other water quality indicators does not suggest a release of contaminants to the groundwater. Based upon these factors, the validity of the analytical data is questionable.

Collection of background under Subtitle D was performed between February 1996 and August 1998. Background monitoring was completed for monitor wells MW-1B, -3, -4, -5, -12A, -13B, -14, -15A, and -15B in November 1997 and for monitor wells MW-18 and -20 in August 1998. Monitor well MW-2 repeatedly demonstrates insufficient water for sampling. Therefore, background for volatile organic compounds (VOCs) in MW-2 was not completed until May 2005 and background monitoring for the remaining detection monitoring list has not been completed. As with pre-subtitle D monitoring (Exhibit 8.1), Subtitle D background monitoring results indicate the presence of numerous dissolved metals in wells of the current monitoring system. Dissolved metals reported for background monitoring events included arsenic, barium, cadmium, chromium, nickel, and selenium. Monitor well MW-18 was the only monitoring well that did not report concentrations of dissolved metals above their respective reporting limit. Concentrations of nitrate were reported for all wells of the current monitoring system during background monitoring. All concentrations of nitrate reported during background monitoring activities. Results of Subtitle D background and detection monitoring are

Subsequent to completion of background monitoring, detection monitoring has been conducted on a semiannual basis for the parameters listed in the facility's GWSAP. Statistical analysis of the data collected during the detection monitoring events is performed in accordance with the GWSAP and applicable regulations. Statistical analysis has reported numerous statistically significant changes (SSCs) and/or statistically significant increases (SSIs) in concentration for various constituents during detection monitoring. Where an SSI is indicated, assessment monitoring or an Alternate Source Demonstration (ASD) may be required. A discussion of SSIs reported for detection monitoring results that resulted in assessment monitoring or an ASD is presented below. The SSIs are addressed on a per well basis.

Monitor Well MW-13B

The results of the November 1998 detection monitoring event reported cis-1,2-dichloroethylene in monitor well MW-13B at a concentration of 12.8 µg/L. Verification resampling confirmed the reported concentration and assessment monitoring for MW-13B was initiated February 1999. The assessment monitoring included sampling and analysis for the complete list of constituents found in Appendix II of 40 CFR part 258 (assessment constituents) and those listed on the facility's approved alternative detection monitoring list. The results of the assessment monitoring reported no new assessment constituents. Subsequent TNRCC correspondence approved assessment monitoring for detection monitoring constituents on a semiannual basis. Monitor well MW-13B remained in assessment monitoring until a statistical exceedance of the groundwater protection standard (GWPS) was reported for VOCs for the June 2004 monitoring event. The exceedance of the GWPS initiated corrective action monitoring for well MW-13B. The TCEQ was notified of the exceedance and the initiation of corrective action monitoring for well MW-13B in correspondence dated July 29, 2004. In accordance with applicable regulation, installation of a monitoring well in the direction of potential contaminant migration was required. Pursuant to this requirement, MW-CA1 was installed on August 19, 2004. The well was subsequently sampled for assessment constituents during September 2004. Assessment monitoring of MW-CA1 reported no concentrations of VOCs above their respective reporting limits. Documentation referencing the installation details for MW-CA1 was forwarded to the TCEQ on September 14, 2004.

Following completion of the assessment of corrective measures a report titled *Report on Assessment of Corrective Measures and Selection of Remedy* was forwarded to the TCEQ. This report, dated March 23, 2005, indicated that landfill gas was the likely source of the VOCs reported for MW-13B. Additionally, the report detailed a remedy that included the installation of a passive vent trench system to interrupt the landfill gas migration in the area of MW-13B. The remedy was approved in TCEQ correspondence dated May 13, 2005. Subsequently, necessary permit modifications to allow the installation of the trench system and an additional gas monitoring probe were approved by the TCEQ. Following approval of the remedy, VOCs reported for MW-13B have diminished to a single compound (cis-1,2-dichloroethylene) with concentrations currently at or below the reporting limit (5 µg/L). Additionally, it should be noted that VOCs have not been detected in MW-CA1 for any monitoring event.

Monitor Well MW-20

The results of the June 2004 monitoring event for MW-20 reported nitrate at a concentration of 0.67 mg/L. Statistical analyses demonstrated an apparent SSI for this constituent for the June 2004 event. On June 29, 2004 the TCEQ was notified of an SSI for nitrate concentrations in monitor well MW-20. Following verification of the reported value, an ASD was prepared for the reported SSI. The ASD was approved in TCEQ correspondence dated November 23, 2004. Based on the TCEQ correspondence monitor well MW-20 remained in detection monitoring.

Monitor Well MW-14

Upgradient monitor well MW-14 reported 1,1-dichloroethane at a concentration of 6.10 µg/L for the November 2005 monitoring event. Verification resampling performed during January 2006 did not confirm the reported value. During the next monitoring event (May 2006),well MW-14 again reported 1,1-dichloroethane at a concentration of 6.78 µg/L. Verification resampling performed during August 2006 confirmed the reported value. Based on TCEQ correspondence, MW-14 was sampled for the full list of assessment constituents during December of 2006. Mercury was the only assessment list constituent detected for the monitoring event. In accordance with applicable regulations, background sampling for mercury was performed. Mercury is currently sampled concurrent with regularly scheduled monitoring events. 1,1-Dichloroethane has been sporadically reported since the initial detection and is likely associated with landfill gas migration.

Other SSIs

Dissolved metals including arsenic, barium, cadmium, chromium, nickel, and selenium have been consistently reported at detectable concentrations during both detection and background monitoring. In correspondence dated March 12, 1999 the TNRCC requested a discussion of elevated cadmium concentrations reported for monitor wells MW-12A, -14, and -15. In response to this request a report titled *Report on Cadmium in Groundwater* was forwarded to the TNRCC on May 26, 1999. The report presented documentation of a natural source for cadmium and other metals reported for monitoring wells at the facility. The report described occurrence of lignite in the shallow subsurface. The report further demonstrated how weathering (oxidation) of this naturally occurring lignite can release significant concentrations of metals into the groundwater. Approval of the report was provided in correspondence dated June 28, 1999. As the conditions related to the oxidation of the lignite in the shallow subsurface have not changed, the ASD remains both applicable and relevant to the evaluation of groundwater quality at the facility.

Migration of landfill gas appears to have resulted in detectable VOC concentrations in monitor wells MW-13B and MW-14. Current remediation efforts have reduced the concentrations of these constituents to near non-detect levels. These efforts will continue in accordance with applicable regulatory requirements. In addition, reported concentrations of metals have been shown to be related to naturally occurring sources. Therefore, there is no indication of groundwater contamination at the facility resulting from a release of leachate from the waste cells.

8.1 Historical	Groundwater Data
8.2 Topograp	phic Map showing ACWMC Permit Boundary
	Showing Proposed Groundwater Monitoring System
8.3.1.1	Groundwater Contour Map, Uppermost Aquifer, 02/07/1996 Water Levels III-5-30A
8.3.1.2	Groundwater Contour Map, Uppermost Aquifer, 05/09/1996 Water Levels III-5-30B
8.3.1.3	Groundwater Contour Map, Uppermost Aquifer, 08/12/1996 Water Levels III-5-30C
8.3.1.4	Groundwater Contour Map, Uppermost Aquifer, 11/07/1996 Water Levels III-5-30D
8.3.2.1	Groundwater Contour Map, Uppermost Aquifer, 02/05/1997 Water Levels III-5-30E
8,3.2.2	Groundwater Contour Map, Uppermost Aquifer, 05/07/1997 Water Levels III-5-30F
8.3.2.3	Groundwater Contour Map, Uppermost Aquifer, 08/04/1997 Water Levels III-5-30G
8.3.2.4	Groundwater Contour Map, Uppermost Aquifer, 11/10/1997 Water Levels III-5-30H
8.3.3.1	Groundwater Contour Map, Uppermost Aquifer, 05/05/1998 Water Levels III-5-30
8.3.3.2	Groundwater Contour Map, Uppermost Aquifer, 11/09/1998 Water Levels III-5-30J
8.3.4.1	Groundwater Contour Map, Uppermost Aquifer, 05/05/1999 Water Levels III-5-30K
8.3.4.2	Groundwater Contour Map, Uppermost Aquifer, 10/20/1999 Water Levels III-5-30L
8.3.4.3	Groundwater Contour Map, Uppermost Aquifer, 11/02/1999 Water Levels III-5-30M
8.3.5.1	Groundwater Contour Map, Uppermost Aquifer, 04/04/2000 Water Levels III-5-30N
8.3.5.2	Groundwater Contour Map, Uppermost Aquifer, 05/09/2000 Water Levels III-5-300
8.3.5.3	Groundwater Contour Map, Uppermost Aquifer, 10/25/2000 Water Levels III-5-30P
8.3.5.4	Groundwater Contour Map, Uppermost Aquifer, 11/06/2000 Water Levels III-5-30Q
8.3.6.1	Groundwater Contour Map, Uppermost Aquifer, 04/19/2001 Water Levels III-5-30R
8.3.6.2	Groundwater Contour Map, Uppermost Aquifer, 05/08/2001 Water Levels III-5-30S
8.3.6.3	Groundwater Contour Map, Uppermost Aquifer, 10/08/2001 Water Levels III-5-30T
8.3.6.4	Groundwater Contour Map, Uppermost Aquifer, 11/13/2001 Water Levels III-5-30U
8.3.7.1	Groundwater Contour Map, Uppermost Aquifer, 04/02/2002 Water Levels III-5-30V
8.3.7.2	Groundwater Contour Map, Uppermost Aquifer, 05/13/2002 Water Levels III-5-30W
8.3.7.3	Groundwater Contour Map, Uppermost Aquifer, 10/10/2002 Water Levels III-5-30X
8.3.7.4	Groundwater Contour Map, Uppermost Aquifer, 11/05/2002 Water Levels III-5-30Y
8.3.8.1	Groundwater Contour Map, Uppermost Aquifer, 05/07/2003 Water Levels III-5-30Z
8.3.8.2	Groundwater Contour Map, Uppermost Aquifer, 05/20/2003 Water Levels III-5-30AA
8.3.8.3	Groundwater Contour Map, Uppermost Aquifer, 11/10/2003 Water Levels III-5-30AB
8.3.8.4	Groundwater Contour Map, Uppermost Aquifer, 11/26/2003 Water Levels III-5-30AC
8.3.9.1	Groundwater Contour Map, Uppermost Aquifer, 05/03/2004 Water Levels III-5-30AD
8.3.9.2	Groundwater Contour Map, Uppermost Aquifer, 06/01/2004 Water Levels III-5-30AE
8.3.9.3	Groundwater Contour Map, Uppermost Aquifer, 09/07/2004 Water Levels III-5-30AF
8.3.9.4	Groundwater Contour Map, Uppermost Aquifer, 11/08/2004 Water Levels III-5-30AG
8.3.9.5	Groundwater Contour Map, Uppermost Aquifer, 11/10/2004 Water Levels III-5-30AH
8.3.10.1	Groundwater Contour Map, Uppermost Aquifer, 05/02/2005 Water Levels III-5-30AI
8.3.10.2	Groundwater Contour Map, Uppermost Aquifer, 05/26/2005 Water Levels III-5-30AJ
8.3.10.3	Groundwater Contour Map, Uppermost Aquifer, 11/03/2005 Water Levels III-5-30AK
8.3.10.4	Groundwater Contour Map, Uppermost Aquifer, 11/07/2005 Water Levels III-5-30AL
8.3.11.1	Groundwater Contour Map, Uppermost Aquifer, 01/03/2006 Water Levels III-5-30AM
8.3.11.2	Groundwater Contour Map, Uppermost Aquifer, 05/31/2006 Water Levels III-5-30AN

8.3.11.3	Groundwater Contour Map, Uppermost Aquifer, 06/29/2006 Water Levels III-5-30AO
8.3.11.4	Groundwater Contour Map, Uppermost Aquifer, 08/14/2006 Water Levels III-5-30AP
8.3.11.5	Groundwater Contour Map, Uppermost Aquifer, 11/07/2006 Water Levels III-5-30AQ
8.3.11.6	Groundwater Contour Map, Uppermost Aquifer, 11/09/2006 Water Levels III-5-30AR
8.3.12.1	Groundwater Contour Map, Uppermost Aquifer, 02/14/2007 Water Levels III-5-30AS
8.3.12.2	Groundwater Contour Map, Uppermost Aquifer, 05/02/2007 Water Levels III-5-30AT
8.3.12.3	Groundwater Contour Map, Uppermost Aquifer, 07/05/2007 Water Levels III-5-30AU
8.3.12.4	Groundwater Contour Map, Uppermost Aquifer, 08/27/2007 Water Levels III-5-30AV
8.3.12.5	Groundwater Contour Map, Uppermost Aquifer, 11/07/2007 Water Levels III-5-30AW
8.3.13	Monitor Well Construction Details
8.4	Cadmium and Mercury in Ground Water III-5-31
8.5	Summary of Detected Cadmium and Mercury in Groundwater III-5-32
8.6	Range of Standard, Duplicate, & Spike Recovery (%)
8.7	Tabulation of Water Level Measurements III-5-34
8.8	Demonstration of Interconnectivity Between Wells MW-1B and MW-18 III-5-35

8.1 Historical Groundwater Data

The following pages are included as a tabulation of historical groundwater analytical data.

- shaded	values	exceed	MCLS
----------	--------	--------	------

			9-15-92	11-18-52	4-72-93	1-19-94
GROUP	PARAMETER	UNITS	LEVEL	LEVEL	LEVEL	LEVEL
_1	Dissolved Arsenic	mg/l	<0.2	≪0.1	<0.1	<01
	Dissolved Barium	mg/l	0.18	0.16	0.08	0.66
	Dissolved Cadmium	mg/l	<0.01	4001	<0.01	<0.01
	Dissolved Chromium	mg/l *	4002	40 02	<0.02	40.02
	Dissolved Copper	mg/l	4002	₹0.02	4002	<0.02
	Dissolved Lead	mg/l	<0.10	<0.1	<0.1	<0.1
	Dissolved Mercury	mg/l	40.001	40,001 ⋅	40001	2003 0.0022
	Dissolved Selenium	mgΛ	<0.20	<0.1	<0.1	<0.1
	Dissolved Silver	mg/l	<0.01	<0.01	<001	<0.01
	Dissolved Zinc	mg/l	<0.01	40.01	003	0.44
2	Dissolved Calcium	mg/l	140	180	180	160
	Dissolved Magnesium	mg/l	34	42	42	41
	Dissolved Sodium	mg/l	410	450	400	400
	Dissolved Polassium	mg/l	13	15	17	13
	Carbonate	mg/l	40.5	<5.0	405	<0.5
	Bicarbonate	rngA	430	360	390	370
	Sullate	mg/l	210	370	270	360
	Flounde	mg/l	<1.0	<1.0	<10	4025
	Nikrate(N)	mg/l	0.12	<0.1	0.12	401
	P ALK(CaCO3)	mg/l	<1.0	<50	<2.0	<10
	AB(CaCO3)	mg/l	430	360	390	370
	Total Hardness	mg/l	480	500	820	630
	Anion-Cation Balance	meq/L:meq/L	27.52/28 01	32,48/30,37	30.27/28 36	29 21/32.26
3	Chloride	mgA	540	540	540	610
	pН		86	6.2	647	6.6
	Specific Conductance	umho/cm	3000	2400	2800	3600
	Total Dissolved Solids	mg/l	1740	1900	1900	2000
	Total Organic Carbon	mg/l	158	19.2	168	88
	Total Organic Carbon	mg/l	15.1	20.9	14.7	8.5
	Total Organic Carbon	mg/l	15.7	185	143	8
	Total Organic Carbon	mg/l	158	20,4	149	88
4	Dissolved iron	mg/l	<0.05	<0.05	0.46	
	Dissolved Manganese	mg/l	0.96	1.2	1.1	1
	MSL Elevation	FL	267.55	267.45	265 01	268 01

- shaded values exceed MCI s

			9-16-92	11-18-92	4-22-83	1-17-94
GROUP	PARAMETER	UNITS	LEVEL	LEVEL	LEVEL	LEVEL
1	Dissolved Arsenic	mg/l	402	40.1	401	401
	Dissolved Barium	mg/l	0.08	0.12	003	0.66
	Dissolved Cadmium	mg/l	4001	<0.01	4001	
	Dissolved Chromium	mg/l	4002	40.02	4002	<001
	Dissolved Copper	mgA	<0.02	40.02	4002	<0.02
	Dissolved Lead	mg/l	<0.10	40.1	401	<0.02
	Dissolved Mercury	mg/l	<0.002	<0.001 ·		<0.1
	Dissolved Selenium	mg/l	<0.20	40.1	0.001	40,0005
	Dissolved Silver	mg/l	<0.01	4001	≪0.1 ≪001	< 02
	Dissolved Zinc	mg/l	<0.01	0.01		<001
2	Dissolved Calcium	mg/l	35	13	0 02 17	016
	Dissolved Magnesium	mg/l	9	3.9		16
	Dissolved Sodium	mg/l	240	150	46	4.4
	Dissolved Polassium	mg/l	7	5	160 7	170
	Carbonate	mgA	40.5	405	<05	49
	Bicarbonate	mgA	390	250		<05
	Sulfate	mg/l	190	63	290 88	300
	Flouride	mg/l	1.1	<1.0		80
	Nitrate(N)	mgA	0.89	0.3	1.3	1.1
	P ALK(CaCO3)	mgA	<50	<5.0	0.52	0.5
	Alk(CaCO3)	mg/l	390	250	<2.0	<10
	Total Hardness	mgA	130	50	290	300.
	Anton-Cation Balance	meg/L:meg/L	13.1/13.1	7.62/7.00	58	62
3	Chlonde	mg/l	67	47	8 36/B 07	8.69/7 99
	pH		6.7	6.7	37	36
	Specific Conductance	umho/cm	1400	850		69
	Total Dissolved Solids	mg/l	900	500	810	840
	Total Organic Carbon	mg/l	245	30.3	600	600
	Total Organic Carbon	mg/l	23.6	30.2	13.2	10 6
	Total Organic Carbon	mg/l	24	28.8	15.4	97
	Total Organic Carbon	mgA	24.7	30.7	12.2	93
4	Dissolved Iron	mg/l	40.05	40.05	79	95
	Dissolved Manganese	mg/l	4001	4003	<0.05	0.25
	MSL Elevation	FL	275 96		4001	40€3
			213 60	275.78	276 24	276 49

ROUP	DAGALIETED		9-16-92	11-18-92	4-22-93	1
1	PARAMETER	UNITS	LEVEL	LEVEL	LEVEL	1-17-94
100	Dissolved Arsenic	mg/l	402	<0.1	40.1	LEVEL
_	Dissolved Barium	mg/l	0.08	G 12	003	<01
	Dissolved Cadmium	mg/l	<001	<0.01		0.66
	Dissolved Chromium	mg/l	<0.02	<0.02	4001	<001
	Dissolved Copper	mg/l	<0.02	40.02	40.02	<0.02
	Dissolved Lead	mg/l	<0.10	40.1	4002	40.02
_	Dissolved Mercury	mg/F	<0.002	40.001 ⋅	40.1	<01
	Dissolved Selenium	mg/l	<0.20	40.1	0001	<0.0005
	Dissolved Silver	mg/l	<0.01	40.01	40.1	< 02
	Dissolved Zinc	mg/l	<001	0.01	<001	<0.01
2	Dissolved Calcium	mg/l	36	13	002	0.16
	Dissolved Magnesium	mg/l	9	3.9	17	16
	Dissolved Sodium	mg/l	240	150	46	44
	Ofssolved Polassium	mg/l	7	5	160	170
	Carbonate	mg/l	<05	405	7	49
	Bicarbonate	mg/l	390	250	<05	<0.5
	Sulfate	mg/l	190	, 63	290	300
	Flounde	mgd	1.1		88	80
	Nitrate(N)	mgA	0.89	<1.0	1.3	1.1
	P ALK(CaCO3)	mg/l	<50	0.3	0.52	05
	Alk(CaCO3)	mg/l	390	≪0	<20	<1.0
	Total Hardness	mg/l	130	250 <5.0	290	300
	Anion-Cation Balance	meg/Limeg/L	13.1/13.1		58	62
1	Chloride	mg/l	67	7 52/7.00	8.36/8 07	8 69/7 99
	рН		6.7	47	37	36
	Specific Conductance	umholem	1400	6.7		59
	Total Dissolved Solids	mgA	900	850	810	840
	Total Organic Carbon	mg/l	245	500	600	600
	Total Organic Carbon	mgA	23.6	303	132	10 6
	Total Organic Carbon	mg/l	24	30.2	15 4	97
	Total Organic Carbon	mgA	24.7	28.8	122	93
	Dissalved Iron	mg/l	40.05	30.7	79	95
	Dissolved Manganese	mgA	4001	<0.05	<0.05	0 29
	MSL Elevation	FL.		<003	<0.01	ଏଉ
		1.	275 96	275.78	276 24	276 49

- shaded values exceed MCLs

	2127000000		9-16-92	11-17-92	4-21-93	1-17-94
group 1	PARAMETER	UNITS	LEVEL	LEVEL	LEVEL	LEVEL
	Dissolved Arsenic	mg/l	<0.2	<0.1	<0.1	<01
	Dissolved Barium	mg/l -	0.08	0.06	0.04	0.058
	Dissolved Cadmium	mg/l	<0.01	<0.01	<0.01	<0.01
	Dissolved Chromium	mg/l	<0.02	<0.02	<0.02	<0.02
	Dissolved Copper	mg/l	<0.02	<0.02	<0.02	<0.02
	Dissolved Lead	mg/l	<0.10	<0.1	<0.1	40.1
	Dissolved Mercury	mg/l	<0.001	<0.001	0.001	0.0012
	Dissolved Selenium	mg/l	<0.20	40.1	<0.1	<0.1
	Dissolved Silver	mg/l	<0.01	<0.01	<0.01	<0.01
	Dissolved Zinc	mg/l	0.05	0.1	0.05	0.26
2	Dissolved Calcium	mg/l	600	630	620	560
	Dissolved Magnesium	mg/l	170	, 190	180	200
	Dissolved Sodium	mg/l	1100	1300	1100	1300
	Dissolved Potassium	mg/l	<1.0	3	2	2
	Carbonale	mg/l	<0.5	<0.5	<0.5	<0.5
	Bicarbonate	mg/l	520	400	380	380
	Sulfate	mg/f	650	1100	920	1100
	Flourida	mg/l	<1.0	<1.0	<1.0	0.44
	Nitrale(N)	mg/l	<0.1	<0.1	<01	<0.1
	P ALK(CaCO3)	mg/l	<1.0	<2.0	<2.0	<2.0
	Alk(CaCO3)	mg/1	520	400	380	380
	Total Hardness	mg/l	2200	2300	320	2400
	Anion-Catlon Balance	meg/L:meg/L	92.44/91.77	103.74101.71	93 64/99 71	105 98/107 05
3	Chloride	mg/l	2400	2400	2500	2600
	pH		6.5	8.6	6.7	6
	Specific Conductance	umho/cm	8900	8500	6100	9300
	Total Dissolved Solids	mg/l	5200	5700	5600	6100
	Total Organic Carbon	mg/l	28.9	14.8	5.1	69
	Total Organic Carpon	mg/l	28 8	14.7	6.1	7.4
	Total Organic Carbon	mgA	28.9	149	62	7.5
	Total Organic Carbon	mg/l	28.8	14.5	6.3	75
4	Dissolved Iron	mg/l	<0.05	0,78	<0.05	<0.05
	Dissolved Manganese	mg/l	0.11	0.14	0.1	012
	MSL Elevation of Water	FI.	260 14	259 54	262	260 85

			9-16-92	11-17-92	4-21-93	1-17-54
SROUP	PARAMETER	UNITS	LEVEL	LEVEL	LEVEL	LEVEL
1	Dissolved Arsenic	mg/l	<0.2	<0.1	401	<01
	Dissolved Barium	mg/l	0.06	0.05	0.04	<001
	Dissolved Cadmium	mgA	<0.01	4001	≪001	<0.01
	Dissolved Chromium	mg/l	40.02	₹0.02	<0.02	<0.02
	Dissolved Copper	mg/l	<0.02	<0.02	4002	<0.02
	Dissolved Lead	mgA	<0.10	<0.1	401	40.1
	Dissolved Mercury	mg/l	40.001	* 2000000000000000000000000000000000000	1000	<00005
	Dissolved Selenium	mg/l	40.20	<0.1	401	401
	Dissolved Silver	mg/l	<0.01	<0.01	<0.01	<0.01
	Dissolved Zinc	mg/l	<001	0.05	0.01	0.13
2	Dissolved Calcium	mg/l	290	280	300	300
	Dissolved Magnesium	mg/l	81	84	73	73
	Dissolved Sodium	mg/l	700	730	720	780
	Dissolved Potassium	mg/l	10	13	14	13
	Carbonate	mg/l	<0.5	40.5	40.5	<05
	Bicarbonate	mg/l	470	480	420	440
	Sulfate	mg/l	920	960	740	1000
	Flouride	mg/l	<1.0	<1.0	<10	4025
	Natrate(N)	mg/l	<0.1	<0.1	<0.1	<0.1
	P ALK(CaCO3)	mgA	<1.0	<5.0	<20	<2.0
	Alk(CaCO3)	mg/l	480	460	420	440
	Total Hardness	mg/t	1100	960	980	960
	Anion-Cation Balance	meq/L:meq/L	52,40/51.89	53 03/52.70	52.70/48 49	55 31/54 19
3	Chioride	mg/l	770	760	LEVEL 401 004 4001 4002 4002 401 00001 401 0001 300 73 720 14 405 420 740 410 420 980	780
	рН		6.7	6.7	6.74	6.36
	Specific Conductance	umho/cm	4200	4900	4500	4600
	Total Dissolved Solids	mg/l	3000	3000	3100	3100
	Total Organic Carbon	mg/l	18.1	63	49	54
	Total Organic Carbon	mg/l	17.9	7.1	49	58
	Total Organic Carbon	mg/l	17.8	6.3	53	65
	Total Organic Carbon	mg/l	18.1	6.2	54	52
4	Dissolved Iron	mg/l	40.05	<0.05	<0.05	029
	Dissolved Manganese	mg/l	0.79	0.88	0 74	0.85
	MSL Elevation of Water	FI.	258 19	257.81	258 89	258 52

 shaded values 	exceed	MCLs
-----------------------------------	--------	------

GROUP	as a survey		1-16-32	11-17-92	4-21-93	1-17-94
	PARAMETER	UNITS	LEVEL	LEVEL		LEVEL
1	Dissolved Arsenic	mg/l	402	<0.1		<0.1
	Dissolved Banum	mg/l	0.05	0.31		
	Dissolved Cadmium	mg/l	4001	<001		0.055
	Dissolved Chromium	mg/l	<0.02	<0.02		<0.01
	Dissolved Copper	mg/l	4002	<0.02		<0.02
	Dissolved Lead	mg/l	<0.10	40.1		<0.02
	Dissolved Mercury	mg/l	<0.001	<0.001		<0.1
	Dissolved Selenium	mg/l	<0.20	40.1		0 0013
	Dissolved Silver	mg/l	<0.01	<0.01		<01
	Dissolved Zinc	mg/l	4001	004		<0.01
2	Dissolved Calcium	mg/l	280	250		0 47
	Dissolved Magnesium	mg/l	74	56	LEVEL 40.1 0004 40.01 40.02 40.01 40.01 40.01 40.01 40.01 40.01 700 15 40.5 41.0 40.1 42.0 41.0 920 50.86946.57 740 6.74 4500 2920 53 53 54 52 40.05	270
	Dissolved Sodium	mg/f	620	570		60
	Dissolved Polassium	mg/l	11	10		620
	Carbonale	mg/i	405	40.5		12
	Bicarbonate	mg/l	510	430		<0.5
	Sulfale	mg/l	670	590		470
	Flouride	mg/l	<1.0	<1.0		630
	Nitrate(N)	mg/l	0.14	40.1		40 25
	P ALK(CaCO3)	mg/l	≪0	45.0	17/2	<0.1
	Alk(CaCO3)	mgA	510	430		<20
	Total Hardness	mgA	900	880		470
	Anion-Cation Balance	meg/L:meg/L	46 25/47 40	42.20/43.78	40.1 0001 40.01 40.01 0002 280 71 700 15 40.5 410 760 41.0 40.1 42.0 410 920 50.88/46.57 740 6.74 4500 2920 53 53	940
3	Chloride	mgA	750	780		45 81/46 00
	pH		6.7			800
	Specific Conductance	umho/cm	4000	7		631
	Total Dissolved Solids	mgA	2900	4100		4200
	Total Organic Carbon	mg/l	18,1	2800		2700
	Total Organic Carbon	mgA	19.2	21,2		73
	Total Organic Carbon	mg/l	18.5	21.8		61
	Total Organic Carbon	mgA	19	21.6		57
4	Dissolved Iron	mgA	0.94	22.1		63
	Dissolved Manganese	mgA	0.7	0.36		12
	MSL Elevation of Water	Ft.		0.74	074	087
		rt.	257 79	257.14	251 37	257.5

			9-16-92	11-17-92	4-21-93	1-17-94
GROUP	PARAMETER	UNITS	LEVEL	LEVEL		LEVEL
1	Dissolved Arsenic	mg/l	<02	<0.1	4-21-93 LEVEL <01 004 <001 <002 <002 <01 0001 <0.1 <0.01 <0.03 400 120 120 120 14 <0.5 320 1800 <1.0 <0.1 13 320 1400 82.4484.05 1200 6.65 6900 4900 8 95 107 78 <0.05 0.78	401
	Dissolved Barium	mg/l	0.1	0.08		<001
	Dissolved Cadmium	mg/l	<0.01	<001		4001
-	Dissolved Chromium	mg/l	40.02	<0.02		4002
	Dissolved Copper	mg/l	<0.02	<0.02		40.02
	Dissolved Lead	mg/l	<0.10	<0.1		40.1
	Dissolved Mercury	mg/l	0.005	001		00011
	Dissolved Selenium	mg/l	<0.20	401		401
	Dissolved Silver	mgA	<0.01	<0.01		
	Dissolved Zinc	mgA	001	0.1		<001
2	Dissolved Calcium	mg/l	280	360		0 27
	Dissolved Magnesium	mg/l	78	86		380
	Dissolved Sodium	mg/l	1200	1100		92
	Dissolved Polassium	mg/l	9	11		1200
	Carbonale	mgA	<0.5	40.5		11 <05
	Bicarbonate	mg/l	360	310		270
	Sulfate	mg/l	1600	1700		1800
	Flouride	mg/l	<1.0	· <1.0		40.25
	Nitrate(N)	mg/l	0.18	0.2		401
	P ALK(CaCO3)	mg/t	<10	<20		<2.0
	Alk(CaCO3)	mg/l	390	310		270
	Total Hardness	mg/l	1100	400		1400
	Anion-Cation Balanca	meq/L:meq/L	72.42/72.86	72.79/72.65		79 07/83 23
3	Chloride	mg/l	930	890		1200
	pН		6.6	6.7		6.13
	Specific Conductance	umho/cm	6000	6800		7000
	Total Dissolved Solids	mg/l	4100	4900		5100
	Total Organic Carbon	mg/l	52.6	10.9		46
	Total Organic Carbon	mgA	53.6	108		33
	Total Organic Carbon	mg/l	54.4	12.7		
	Total Organic Carbon	mg/l	53.6	11.1		5
4	Dissolved Iron	mg/l	<0.06	1.3		55
	Dissolved Manganese	mg/l	0.78	0.73		0.05
	MSL Elevation of Water	FI.	250.16	250 54	251 37	0.95 250.87

- shaded	walues	avenad	MACLA

			9-16-32	11-17-92	4-21-93	1-17-54
GROUP	PARAMETER	UNITS	LEVEL	LEVEL	LEVEL	LEVEL
1	Dissolved Arsenic	mg/l	<02	<0.1	40.1	<0.1
	Dissolved Barium	mg/l	003	0.03	LEVEL 40.1 0.003 40.01 40.02 40.02 40.1 40.1 40.003 40.1 40.01 40.01 40.0 15 40.5 440 340 410 41.1 4440 580 37 62/36 01 720 7.13 3800 2400 48 53 47 5 40.05 0.48	0.018
	Dissolved Cadmium	mgA	₹0.01	<0.01	<0.01	4001
	Dissolved Chromium	mg/l	49.83	<0.02	40.002	4002
	Dissolved Copper	mg/l	88	<0.02	40.002	4002
	Dissolved Lead	mg/t	<0.10	<0.1	40.1	<0.1
	Dissolved Mercury	mg/l	40.001	<0.001 ⁴	5 0.002	< 0005
	Dissolved Selenium	mg/l	<0.20	<0.1		<0.1
	Dissolved Silver	mg/l	<0.01	<001	<001	4001
	Dissolved Zinc	mg/l	0.03	0.02	<0.01	0.16
2	Dissolved Calcium	mg/l	160	160	003 4001 4002 40.02 40.1 50002 40.1 4001 4001 180 38 800 15 400 340 410 401 4 440 580 37 6296 01 720 7.13 3600 2400 48 5.3	180
	Dissolved Magnesium	mg/l	35	32	38	36
	Dissolved Sodium	mg/l	580	600	600	650
	Dissolved Polassium	mg/l	11	12	15	14
	Carbonate	mg/l	<0.5	1	<0.5	<05
	Bicarbonate	mg/l	500	. 430	440	420
	Suifale	mg/l	420	480	340	510
	Flouride	mg/l	<1.0	<1,0	<10	<0.25
	Nitrate(N)	mg/l	40.1	40.1	<0.1	40.1
	P ALK(CaCO3)	mg/l	<1.0	450	4	<20
	Ak(CaCO3)	mg/l	500	430	440	420
	Total Hardness	mg/l	520	580	580	590
	Anion-Cation Balance	meq/L:meq/L	37 58/36 40	37 05/38,78	37 62/36 01	40 53/39 93
3	Chlorida	mg/l	670	670	4001 4002 40.02 40.1 40.003 40.1 40.01 40.01 160 36 600 15 40 340 410 40 580 37 62/36 01 720 7.13 3800 2400 48 53 47 5	720
	pH		7.1	7.5	7.13	684
	Specific Conductance	umho/cm	3400	3700	3600	3800
	Total Dissolved Solids	mg/l	2300	2350	2400	2400
	Total Organic Carbon	mg/l	20.1	7,7	48	59
	Total Organic Carbon	mgA	21.2	7.6	5,3	47
	Total Organic Carbon	mg/l	22.2	7.5	4.7	6.7
	Total Organic Carbon	mg/l	21.1	7.6	5	71
4	Dissolved Iron	mg/l	<0.05	40.05	<0.05	0.08
	Dissolved Manganese	mg/l	0.42	0.42	0.48	053
	MSL Elevation of Water	Ft.	252.26	252.79	253.9	254.4

			9-16-92	11-18-92	4-21-93	1-17-54
ROUP	PARAMETER	UNITS	LEVEL	LEVEL	LEVEL	LEVEL
1	Dissolved Arsenic	mgA	€02	<0.1		401
	Dissolved Barium	mg/l	007	0.07		0.025
	Dissolved Cadmium	mg/l	4001	<0.01		4001
	Dissolved Chromium	mg/l	40.02	<0.02		4002
	Dissolved Copper	mg/l	4002	<0.02		4002
	Dissolved Lead	mg/l	<0.10	<0.1		40.1
	Dissolved Mercury	mg/l	4001	40.001		
	Dissolved Selenium	mg/l	<0.20	40.1		00012
	Dissolved Silver	mg/l	<0.01	<0.01		40.1
	Dissolved Zinc	mg/l	4001	0.02		<001
2	Dissolved Calcium	mg/l	240	280	40 02 40 02 40 1 0001 40.1 40 01 280 78 520 12 40.5 440 670 41.0 40.1 9 440 940 48 08/47 365 830 6 57	0.27
	Dissolved Magnessum	mg/l	71	76		290
	Dissolved Sodium	mg/l	530	580		77
	Dissolved Polassium	mg/l	11	14		620
	Carbonale	mg/l	405	<0.5		12
	Bicarbonate	mg/l	400	430		<0.5
	Sulfate	mg/l	530	590		420
	Flouride	mg/l	<10	<10		550
	Nitrate(N)	mg/l	0.12	40.1		054
	P ALK(CaCO3)	mg/l	450	<5.0		<0.1
	Alk(CaCO3)	mg/l	540	430		<2.0
	Total Hardness	mg/l	910	920		420
	Anion-Cation Balance	meq/L:meq/L	40.95/41.30	45 98/44 06		1000
1	Chloride	mg/l	750	790		48 24/45 47
	рН		6.6	6.7	401 006 4001 4002 4002 401 0001 401 4001 4001 280 79 620 12 40.5 440 670 41.0 40.1 9 440 940 48 08/47 36	880
	Specific Conductance	umho/cm	3900	4300		621
	Total Dissolved Solids	mg/l	2800	2700		4400
	Total Organic Carbon	mg/l	23.4	22.2		2900
	Total Organic Carbon	mg/l	23.2	19.7		32
	Total Organic Carbon	mgA	22.6	21.6		46
	Total Organic Carbon	mg/l	23	20.5		49
4	Dissolved Iron	mg/l	0.16	0.35		56
	Dissolved Manganese	mg/l	2	2.1		036
	MSL Elevation of Water	Fl.	2563			2
		1 11	ريدع	254 86	25/26	255 76

- shaded values	exceed MCLs	
-----------------	-------------	--

GROUP	PARAMETER	-	9-16-92	11-18-52	4-21-03	1-19-94
1		ZTIAU	LEVEL	LEVEL	LEVEL	LEVEL
	Dissolved Arsenic	mg/l	<02	<0.1	LEVEL 40.1 0.08 40.01 40.02 40.02 40.1 40.001 40.1 40.01 0.02 350 140 1000 10 40.5 1100 670 41.0 40.1 410 1100 1500 72.88774.25 1400 6.45 6600 4630 36.9 36.5 37.5 36.7	<01
	Dissolved Barium	mg/l	0.08	0.08		0.13
_	Dissolved Cadmium	mg/t	<0.01	<0.01	<001	<0.01
	Dissolved Chromium	mgA	<0.02	<0.02	<0.02	<0.02
	Dissolved Copper	mg/l	<0.02	<0.02	40.02	0.042
	Dissolved Lead	mg/l	<0.10	40.1	40.1	<01
	Dissolved Mercury	mg/l	40.001	<0.00t '	<0.001	400005
	Dissolved Selenium	mg/l	<0.20	<0.1	401	401
	Dissolved Silver	mg/l	<0.01	40.01	4001	<001
	Dissolved Zinc	mg/l	<0.01	0.02		034
2	Dissolved Calcium	mg/l	410	330		370
	Dissolved Magnesium	mg/l	120	110		120
	Dissolved Sodium	mg/l	1000	1100		1100
	Dissolved Polassium	mg/l	8	8		11
	Carbonate	mgA	€0.5	<0.5		<05
	Bicarbonate	mgA	1100	1100		810
	Sulfate	mg/l	880	380		840
	Flouride	mg/l	<1.0	<1.0		0.52
	Narate(N)	mgA	<0.10	<0.1		40.1
	P ALK(CaCO3)	mg/l	<1.0	<10		<20
	Alk(CaCO3)	mg/l	1100	1100		810
	Total Hardness	mg/l	1400	1400	140 1000 10 40.5 1100 670 41.0 40.1 410 1100 1500 72 88/74 25 1400 6.45	1400
	Anion-Cation Balance	meg/L;meg/L	76 67/74.13	73 68/67 00		76 68/70 96
3	Chloride	mg/l	1300	1400		1300
	pH		6.4	68		646
	Specific Conductance	umho/cm	6800	6600		7300
	Total Dissolved Solids	mg/l	4800	4500		4600
	Total Organic Carbon	mgA	24.3	29.7		25.6
	Total Organic Carbon	mg/l	23.9	32.2		254
	Total Organic Carbon	mgA	25.1	31.6		259
	Total Organic Carbon	mgA	248	30.3		252
4	Dissolved Iron	mgA	<0.06	0.06	4006	
	Dissolved Manganese	mgA	1.4	1.6	21	0.53 2.7
	MSL Elevation of Water	FL	266 42	265.76	263.32	265 17

			1-16-12	11-18-92	4-21-93	1-19-94
GROUP	PARAMETER	UNITS	LEVEL	LEVEL	LEVEL	LEVEL
1	Dissolved Arsenic	mg/l	<02	40,1	401	<01
	Dissolved Barium	mg/l	0.12	014	LEVEL 401 008 4001 4002 40.02 40.1 40001 40.1 4001 0002 220 64 940 7 40.5 1200 250 1.3 40.1 4 1190 900 57 31,68 98 1170 702 5700 3630 368 33.1 34	0.25
	Dissolved Cadmium	mgA 402 401 401 mgA 0.12 0.14 0.08 mgA 4001 4001 4001 mgA 4002 4002 4002 mgA 4002 4002 4002 mgA 40.10 40.1 40.1 mgA 40.20 40.1 40.1 mgA 40.01 40.01 40.01 mgA 40.01 0.07 0.02 mgA 200 200 220 mgA 56 56 64 mgA 880 900 940 mgA 4 5 7 mgA 405 3 40.5 mgA 960 870 1200 mgA 500 250 mgA 40.10 40.1 40.1 mgA 40.10 40.1 40.1 mgA 40.5 3 40.5 mgA 500 500	<0.01			
	Dissolved Chromium	mg/l	4002	<0.02	4002	<0.02
	Dissolved Copper	mgA	<0.02	<0.02	4003	4002
	Dissolved Lead	mgA	<0.10	<0.1	<0.1	401
	Dissolved Mercury	mg/l	<0.001	40001 '	<0.001	40 0005
	Dissolved Selenium	mgA	40.20	401	<0.1	40.1
	Dissolved Silver		<0.01	<0.01	<0.01	4001
	Dissolved Zinc		<0.01	0.07	002	0.26
2	Dissolved Calcium	mg/l	200	200	220	200
	Dissolved Magnesium	mg/l	56	56	LEVEL 401 008 4001 4002 40.02 40.1 40001 40.1 4001 0002 220 64 940 7 40.5 1200 250 1.3 40.1 4 1190 900 57 31,58 98 1170 702 5700 3630 368 33.1	62
	Dissolved Sodium	mg/l	880	900		1000
	Dissolved Polassium	mg/l	4	5	7	5
	Carbonale	mg/l	40.5	3	€0.5	<0.5
	Bicarbonate	mg/l	960	870	1200	1100
	Sulfate	mg/l	530	530	250	270
	Flourida	mg/l	1.4	<1.0	1.3	1.2
	Nitrale(N)	mg/l	<0.10	<0.1	40.1	<0.1
	P ALK(CaCO3)	mg/l	<1.0	<5.0	1200 250 1.3 40.1	<20
	Alk(CaCO3)	mg/l	960	870	1190	1100
	Total Hardness	mg/l	770	810	008 4001 4002 4002 40.1 40001 40.1 40001 002 220 64 940 7 40.5 1200 250 1.3 40.1 4 1190 900 \$57.31.58.98 1170 702 5700 3630 36.8 33.1 34 33.9 40.05	810
	Anion-Calion Balance	meg/L:meg/L	57.3/53.0	53.8967.45	57 31,58 98	58.73/55 86
1	Chloride	mg/l	1000	970	1170	1100
	рН		6.9	75	401 008 4001 4002 4002 40.1 40001 40.1 4001 0002 220 64 940 7 40.5 1200 250 1.3 40.1 4 1190 900 \$731,658 98 1170 700 25700 3630 368 33.1 34 33.9 4006	688
	Specific Conductance	umho/cm	4900	5500	5700	5700
	Total Dissolved Solids	mg/l	3500	3400	3530	3600
	Total Organic Carbon	mg/l	28.8	29.5		27 4
	Total Organic Carbon	mg/l	33.3	31 3		27.2
	Total Organic Carbon	mg/l	29.7	32		26 6
	Total Organic Carbon	mg/l	33	32.2	33.9	268
4	Dissolved Iron	mg/l	4005	0.06	40.05	40.05
	Dissolved Manganese	mg/l	037	0.35	0.13	0 47
	MSL Elevation of Water	FI.	266 94	266.78	266 68	265 48

			9-16-92	11-18-92	4-22-93	1-19-84
GROUP	PARAMETER	UNITS	LEVEL	LEVEL	LEVEL	LEVEL
1	Dissolved Arsenic	mg/l	<02	<0.1	<01	<0.1
	Dissolved Barium	mg/l	003	003	40 1 0 03 40 01 40 02 40 02 40 1 40 001 40 10 40 10 40 10 20 1400 26 40 5 48 2200 41 0 40 1 42 0 48 2700 117 62/120 60	0 0 49
	Dissolved Cadmium	mg/l	<0.01	<0.01	<0.01	<001
	Dissolved Chromium	mg/l	40.022	<0.02	<0.02	<0.02
	Dissolved Copper	mg/l	40.03		<0.02	0.025
	Dissolved Lead	mgA	4 0.10	<0.1	<0.1	<0.1
	Dissolved Mercury	mg/t	40 001	<0.001	<0.001	<0.0005
	Dissolved Selenium	mg/l	4020	40.1	<01	<0.1
	Dissolved Silver	mg/l	40.01	40.01	<0.01	<001
	Dissolved Zinc	mg/l	<0.01	0.12	0.13	0.55
2	Dissolved Calcium	mg/l	700	700	760	710
	Dissolved Magnesium	mg/l	190	210	220	220
	Dissolved Sodium	mg/l	1600	1500	1400	1500
	Dissolved Polassium	mgA	13	19	26	18
	Carbonate	mg/l	<0.5	<0.5	<0.5	40.5
	Bicarbonate	mg/l	63	53	48	36
	Sulate	mg/l	2300	2100	2200	2100
	Flounde	mg/l	<1.0	<1.0	<1.0	0.26
	Nitrate(N)	mg/l	<0.10	<0.1	<0.1	401
	P ALK(CaCO3)	mg/l	<1.0	<1.0	<2.0	<10
	Alk(CaCO3)	mgA	83	53	48	38
	Total Hardness	mg/l	2600	2500	2700	3000
	Anion-Cation Balance	mea/Limea/L	120.3/120.6	117.98/118.19	117 62/120.60	119 28/117 95
3	Chioride	mg/l	2200	2300	2300	7300
	рН		5.7	8	5.48	549
	Specific Conductance	umho/cm	8300	9800	9740	11000
	Total Dissolved Solids	mg/l	7200	6900	6800	7400
	Total Organic Carbon	mg/l	18.4	28,3	20,2	18 6
	Total Organic Carbon	mg/l	179	27	195	183
	Total Organic Carbon	mg/l	18.8	25.8	20	18
	Total Organic Carbon	mg/l	17.7	26.5	20 1	183
4	Dissolved Iron	mg/l	0.06	<0.05	<0.05	0.07
	Dissolved Manganese	mg/l	09	0.7	0.65	0.69
	MSL Elevation of Water	Ft.	279 03	278.92	277 83	278 38

			9-15-82	11-18-82	4-22-93	1-19-94
ROUP	PARAMETER	UNITS	LEVEL	LEVEL	LEVEL	LEVEL
1	Dissolved Arsenic	mg/l	<0.2	<0.1	40 1	<01
	Dissolved Banum	mg/l <0.2 <0.1 <0.1 <0.1 mg/l 0.05 0.02 0.02 0.02 m mg/l <0.01	002	0.047		
	Dissolved Cadmium	mg/l	<001	<0.01	<001	<0.01
	Dissolved Chromium	mg/l	40.02	4002	4002	<0.02
	Dissolved Copper	mg/l	<0.02	<002	4002	4002
	Dissolved Lead	mg/l	<0.10	<0.1	<0.1	<01
	Dissolved Mercury	mg/l	<0.001	<0.001	40.001	<0.0005
	Dissolved Selenium	mg/l	<0.20	<0.1	4 0.1	. 401
	Dissolved Silver	mg/l	<0.01	<0.01	<001	<0.01
	Dissolved Zinc	mg/l	<0.01	<0.01	002	014
2	Dissolved Calcium	mg/l	280	250		270
	Dissolved Magnesium	mg/l	68	68	84	62
	Dissolved Sodium	mg/l	530	540	510	520
	Dissolved Polassium	mg/l	14	21	72	18
	Carbonate	mg/l	<0.5	<0.5	40.5	<05
	Bicarbonate	mg/l	320	240	250	240
	Sulfate	mg/l	710	820	670	710
	Flounde	mg/l	<10	<1.0	<1.0	4025
	Nikrate(N)	mg/l	<0.10	<0.1	40.1	9
	P ALK(CaCO3)	mg/l	<10	<1.0	<20	<10
	Aik(CaCO3)	mg/l	320	240	250	240
	Total Hardness	mg/l	940	860	920	930
	Anion-Cation Balance	meq/L:meq/L	41.59/43,11	42.38/42.46	42.77/40 85	41.98/41.69
1	Chloride	mg/l	660	640	710	710
	рН		6.6	68	002 -001 -002 -003 -0.1 -0.001 -0.1 -0.01 -0.01 -0.02 -250 -64 -510 -72 -0.5 -250 -670 -1.0 -0.1 -2.0 -250 -920 -42.77140.85	657
	Specific Conductance	umho/cm	4000	3900	3800	4300
	Total Dissolved Solids	mg/l	2800	2500	2500	2600
	Total Organic Carbon	mg/l	2.4	5.8	5.5	14
	Total Organic Carbon	mg/l	25	5.4	78	39
	Total Organic Carbon	mg/l	25	5.9	88	39
	Total Organic Carbon	mg/l	2.4	6.1	8.4	4
4	Dissolved Iron	mg/l	40.05	3	31	38
	Dissolved Manganese	mg/l	1.9	18	1.7	18
	MSL Elevation of Water	Ft.	269 26	26951	269 47	268 97

- shaded	values	evened	MCI .

			9-15-92	11-18-92	4-22-83	1-19-94					
ROUP	PARAMETER	UNITS	LEVEL	NFEL LEVEL LEVEL							
1	Dissolved Arsenic	mg/l	<02	<0.1	40.1	LEVEL <01					
	Dissolved Barrum	mg/l	0.23	0.22	0.19	025					
	Dissolved Cadmium	mg/l	<0.01	<0.01	<0.01	<001					
	Dissolved Chromium	mg/l	<0.02	<0.02	40.02	<0.02					
	Dissolved Copper	mg/l -	<0.02	<0.02	40.02	<0.02					
	Dissolved Lead	mg/l	<0.10	<0.1		≪01					
	Dissolved Mercury	mg/l	<0.001	40.001	<0.001	<0.0005					
	Dissolved Selenium	mg/l	<0.20	<0.1		901					
	Dissolved Silver	mg/l	≪001	<0.01		<0.01					
	Dissolved Zinc	mg/l	<0.01			0.28					
2	Dissolved Calcium	mg/l	220	180		210					
- 1/-	Dissolved Magnesium	mg/l	49	50		48					
	Dissolved Sodium	mg/l	430	510		470					
	Dissolved Potassium	mg/l	12			18					
	Carbonale	mg/l	<0.5			405					
	Bicarbonate	mg/l	550			400					
	Sulfate	mg/l	130			130					
	Flouride	mg/l	<10			40.25					
	Ndrate(N)	mg/l	<0.10	40.1	0.17	40.1					
	P ALK(CaCO3)	mgA	<1.0	<5.0	4	<1.0					
	Alk(CaCO3)	mg/l	550	420	400	400					
	Total Hardness	mg/l	680	160	940	750					
	Anion-Cation Balance	meq/L:meq/L	34.26/34.15	35 87/33,44	36 74/34 90	35 49/36 03					
3	Chloride	mg/l	780	800	890	930					
	pH		5.8	6.5	6 66	654					
	Specific Conductance	umho/cm	3000	3100	3440	4100					
	Total Dissolved Solids	mg/l	2000	2000	2200	2100					
	Total Organic Carbon	. mg/l	14.3	6.4	16.7	10.4					
	Total Organic Carbon	mg/l	13.5	6.1	16.4	135					
	Total Organic Carbon	mg/l	13.9	6.6	175	11.2					
	Total Organic Carbon	mg/l	14.3	63	168	119					
4	Dissoived Iron	mg/l	0.2	0.56	0.06	0.85					
4.00	Dissolved Manganese	mg/l	1.7	1.8	1,6	16					
	MSL Elevation of Water	. Fl.	268.36	263.16	268.82	270.92					

A		to the late of the late of the	2427.3
 shaded 	Values	AYCARD	MCI

			9-15-92	11-18-82	4-22-93	1-19-94		
GROUP	PARAMETER	UNITS	LEVEL	LEVEL	LEVEL	LEVEL		
1	Dissolved Arsenic	mg/l	<0.2	40.1	401	<01		
	Dissolved Banum	Mom	0.16	0.15	014	0.48		
	Dissolved Cadmium	mg/l	4-0.01	0.02	<001	0.023		
	Dissolved Chromium	mg/l	<0.02	4000	<0.02	<0.02		
	Dissolved Copper	mg/l	<0.02	<0.02	<0.02	<0.02		
	Dissolved Lead	mg/l	<0.10	<0.1	40.1	<01		
	Dissolved Mercury	mg/l	0.002	0.002 - 771	0.002	0.001		
	Dissolved Selenium	mg/l	<0.20	40.1	40.1	401		
	Dissolved Silver	mg/l	<001	<0.01	<001	<0.01		
	Dissolved Zinc	тол	0.14	0.18	023	054		
2	Dissolved Calcium	mgA	330	360	370	390		
	Dissolved Magnesium	mg/l	94	99	98	110		
	Dissolved Sodium	mg/l	610	740	670	700		
	Olssolved Polassium	mg/t	11	. 18	18	15		
	Carbonate	mg/l	<0.5	40.5	405	40.5		
	Bicarbonate	mgA	13	9	9	11		
	Sulfate	mg/l	50	40	55	51		
	Flouride	mg/i	<10	<1.0	<10	40.25		
	Nitrate(N)	mgA	0.41	0.41	0.39	038		
	P ALK(CaCO3)	mg/l	<1.0	<1.0	<10	<10		
	Afk(CaCO3)	mgA	13	9	9	11		
	Total Hardness	mg/l	1200	1200	1500	1300		
	Anion-Cation Balance	meq/L:meq/L	52.23/51 07	58.76/57 55	56 18/60 74	59 40/57 86		
1	Chloride	mg/l	1800	2000	2100	2000		
	pH		5.4	5.1	5.22	5 18		
	Specific Conductance	umho/cm	8000	6000	5560	7000		
	Total Dissolved Solids	mgA	3780	3200	4000	3800		
	Total Organic Carbon	mg/l	2.6	8.4	96	7		
	Total Organic Carbon	mg/l	2.8	8.8	92	65		
	Total Organic Carbon	mgA	2.7	93	8.3	5		
	Total Organic Carbon	mgA	2.6	9.4	7.7	7		
4	Dissolved Iron	mg/l	0.09	40.05	40.06	007		
	Dissolved Manganese	mgA	0.75	083	084			
	MSL Elevation of Water	FL	284 75	284.43	283.75	0 86 282 75		

- shaded va	luce sycand	1401 -
- alleded va	lues exceed	MILIE

			9-15-92	11-18-92	4-22-93	1-19-04
ROUP	PARAMETER	UNITS	LEVEL	LEVEL	LEVEL	LEVEL
1	Dissolved Arsenic	mg/l	402	40.1	401	<01
	Dissolved Barrum	mg/l	0 67	0.56	0.54	09
	Dissolved Cadmium	mg/l	0.02	0.02	* 0.04	0.034
	Dissolved Chromium	mg/l	40.02	<0.02	4000	U.U.34
	Dissolved Copper	mg/l	40.02	<0.02	40.02	003
	Dissolved Lead	mg/l	<0.10	40.1	401	
4	Dissolved Mercury	mg/l	40001	40.001	40.001	<0.1
	Dissolved Selenium	mg/l	40.20	40.1	40.1	00013
	Dissolved Silver	mg/l	<001	40.01	40.01	<0.1
	Dissolved Zinc	mgA	0.1	0.1	0.13	<001
2	Dissolved Calcium	mg/l	530	570	590	0.62
	Dissolved Magnesium	mg/l	140	150		800
	Olssolved Sodium	mg/l	630	740	150	150
	Dissolved Potassium	mgA	13	20	660	710
	Carbonate	mg/l	405	40.5	33	19
	Blcarbonate	mg/l	18	13		40.5
	Sulfate	mg/l	38	29	13	8.4
	Flouride	mg/l	<1.0	<1.0	29	41
	Nitrate(N)	mgA	0.38	0.34	<10	40.25
	P ALK(CaCO3)	mg/l	<1.0	<1.0	0.52	0.47
	Alk(CaCO3)	mg/l	18	13	<10	<1.0
	Total Hardness	mg/l	2000	1900	13	8.4
	Anion-Cation Balance	meq/L;meq/L	-	73.53/71.44	2100	2000
1	Chlonde	mgA	2300	2500	71.37/71.44	73 70/68 85
	рН		48	54	2500	2400
	Specific Conductance	umho/cm	7000	7000	52	5.14
	Total Dissolved Solids	mgA	4100	4300	7020	7700
	Total Organic Carbon	mg/l	93	17.4	4800	4500
	Total Organic Carbon	mg/l	93	15.8	148	8.1
	Total Organic Carbon	mg/l	9.1	16.4	11.5	8.1
	Total Organic Carbon	mgA	93	17	153	78
4	Dissolved iron	mg/l	40.06	4005	40.05	8.1
	Dissolved Manganese	mg/l	0.58	068	061	0.07
	MSL Elevation of Water	FL.	277 57	277.37	277 78	0 79 277 28

			1-15-32	11-18-92	4-22-93	1-17-94		
GROUP	PARAMETER	UNITS	LEVEL	LEVEL	LEVEL	LEVEL		
1	Dissolved Arsenic	mg/l	<02	<0.1	<01	DRY		
	Dissolved Banum	mg/l	0.11	0.11	01	300		
	Dissolved Cadmium	mg/l	<0.01	<001	<0.01			
	Dissolved Chromium	mg/l	<0.02	<0.02	4002	140		
	Dissolved Copper	mg/l	<0.02	≪0.02	4002	QAY -		
	Dissolved Lead	mg/l	<0.10	40.1	40.1			
	Dissolved Mercury	mg/l	€0.001	40 CO1 '	<0.001			
	Dissolved Selenium	mg/l	<0.20	<0.1	401	- 18.		
	Dissolved Silver	mg/l	<001	<0.01	4001	-		
	Dissolved Zinc	mg/l	40.01	<0.01	0.02			
2	Dissolved Calcium	mg/l	270	250	300	- 1/•ii		
	Dissolved Magnesium	mg/l	69	68	66			
	Dissolved Sodium	mg/l	390	470	400	C.		
	Dissolved Polassium	mgA	12	15	15			
	Carbonale	mg/l	<0.5	<0.5	<05			
	Bicarbonale	mg/l	65	66	57			
	Sulfate	mg/l	84	110	110			
	Flouride	mg/l	<1.0	<1.0	<1.0	•1		
	Nitrale(N)	mg/l	0.13	<0.1	<0.1	•		
	P ALK(CaCO3)	mg/l	<1.0	<1.0	<1.0	the second second		
	Alk(CaCO3)	mg/l	65	66	57			
	Total Hardness	mg/l	960	900	1100			
	Anion-Cation Balance	meq/L:meq/L	37.00/37.38	39 86/37 57	39 19/37.52			
3	Chloride	mg/l	1200	1200	1200	Later and the second		
	рН		6	7	5 93			
	Specific Conductance	umho/cm	4000	3600	3830			
	Total Dissolved Solids	mg/l	2600	2500	2700			
	Total Organic Carbon	mg/l	96	9.6	7			
	Total Organic Carbon	mg/l	9.7	10.4	64			
	Total Organic Carbon	mg/l	9.6	10	5	3.4		
	Total Organic Carbon	mg/l	10	10,1	28.9			
1	Dissolved iron	Mg/f.	15	15	16			
	Dissolved Manganese	mg/l	2	2.2	2.1	•		
	MSL Elevation of Water	FI.	270 84	271.04	266 5	DRY		

- shaded	wal	1100	avenad	MCL
- Silducu	V d	UES	DICEGG	MULS

22000	200000000000000000000000000000000000000		9-16-92	11-18-92	4-21-93	1-17-94	
GROUP	PARAMETER	UNITS	LEVEL	LEVEL	LEVEL	LEVEL	
1	Dissolved Arsenic	mg/l	<02	<0.1	<0,1	<01	
	Dissolved Barium	mg/l	0.08	0.09	0.07	0039	
	Dissolved Cadmium	mg/l	<0.01	<0.01	<0.01	<0.01	
	Dissolved Chromlum	mg/l	<0.02	<0.02	4002	<0.02	
	Dissolved Copper	mg/l *	<0.02	<0.02	4002	<0.02	
	Dissolved Lead	mg/l	<0.10	<0.1	40.1	<01	
	Dissolved Mercury	mg/l	<0.001	<0.001 ′	<0.001	0.0013	
-	Dissolved Selenium	mg/l	<0.20	<0.1	40.1	401	
	Dissolved Silver	mgA	<0.01	<0.01	<0.01	<0.01	
	Dissolved Zinc	mg/l	4001	0.3	0.01	018	
2	Dissolved Calcium	mg/l	140	150	150	170	
	Dissolved Magnesium	mg/l	34	33	31	36	
	Dissolved Sodium	mg/l	620	610	610	680	
	Dissolved Polassium	mg/l	12	14	12	13	
	Carbonate	mg/l	40.5	. 2	40.5	405	
	Bicarbonate	mg/l	680	580	610	620	
	Sulfate	mg/l	600	570	630	550	
	Flouride	mg/l	<10	<1.0	<10	4025	
	Nitrate(N)	mg/l	40.1	40.1	40.1	40.1	
	P ALK(CaCO3)	mg/l	<5.0	<1.0	<5.0	<20	
	Alk(CaCO3)	mg/l	680	580	610	620	
	Total Hardness	mg/l	380	460	460	540	
	Anion-Cation Balance	meg/L:meg/L	37.13/37.19	37.22/35 09	37 04/37 01	41 53/38 56	
3	Chloride	mg/l	390	400	400	520	
7-0-7	рн	T	7	75	7.03	651	
	Specific Conductance	umho/cm	3100	3400	3300	3700	
	Total Dissolved Solids	mg/l	2300	2200	2300		
	Total Organic Carbon	mg/l	32.6	26.7	9.7	76	
	Total Organic Carbon	mgA	31	28.5	93	91	
	Total Organic Carbon	mg/l	32.9	29.3	9,7	83	
	Total Organic Carbon	mg/l	31.8	27.8	11.2	9	
4	Dissolved Iron	mg/l	<0.05	40.05	40.05	0.06	
	Dissolved Manganese	mg/l	1.9	1.9	2,4	25	
	MSL Elevation of Water	FL FL	260.01	261.97	259 44	261 69	

			1-16-02	11-12-92	4-21-93	1-17-84	
GROUP	PARAMETER	UNITS	LEVEL	LEVEL	LEVEL	LEVEL	
1	Dissolved Arsenic	mg/l	<02	<0.1	40.1	401	
	Dissolved Barrum	mg/l	0.08	0.08	0.05	0.099	
	Dissolved Cadmium	mg/l	<0.01	40.01	4001	40.01	
	Dissolved Chromium	mg/l -	<0.02	40.02	40.02	40.02	
	Dissolved Copper	mg/l	<003	4002	40.02	40.02	
	Dissolved Lead	mg/l	<0.10	<0.1	€0.1	40.1	
	Dissolved Mercury	mg/l	€0001	40.001 '	40.001	40,0005	
	Dissolved Selenium	mg/l	<0.20	40.1	40.1	40.1	
	Dissolved Silver	mg/L	<0.01	≪001	4001	4001	
	Dissolved Zinc	mg/l	<0.01	≪0.01	0.02	03	
2	Dissolved Calcium	mg/l	200	200	220	230	
	Dissolved Magnesium	mgA	49	53	52	49	
	Dissolved Sodium	mg/l	590	660	660	700	
	Dissolved Polassium	mg/l	12	16	16	14	
	Carbonate	mg/l	<0.5	40.5	40.5	40.5	
	Bicarbonate ·	mg/l	470	390	390	350	
	Sulfate	mg/l	650	820	590	800	
	Flouride	mg/l	<1.0	<1.0	<1.0	40.25	
	Nitrate(N)	mg/l	0.11	40.1	<0.1	401	
	P ALK(CaCO3)	mg/l	<1.0	≪0	50	<1.0	
	Alk(CaCO3)	mgA	470	390	390	360	
	Total Hardness	mg/l	720	650	780	740	
	Anion-Cation Balanca	meq/L:meq/L	41.42/40.04	43 54/44 92	44,44/4030	46 39/44 61	
1	Chloride	mg/l	620	540	680	670	
	pH		6.7	7	6.74	6.68	
	Specific Conductance	umho/cm	3300	3900	4000	4700	
	Total Dissolved Solids	mg/l	2600	2600	2600	2700	
	Total Organic Carbon	mg/l	7.4	17.7	10.4		
	Total Organic Carbon	mg/l	75	15.1	10.6	52	
	Total Organic Carbon	mg/l	7.4	16,9	108	68	
	Total Organic Carbon	mg/l	7.4	17.4	109	56	
4	Dissolved Iron	mg/l	<0.05	0.34	4005	0 12	
	Dissolved Manganese	mg/l	0.85	0.92	094	1	
	MSL Elevation of Water	FI.	267.86	259 31	260 12	259 32	

Angelina County Waste Management Center, Permit No. MSW 2105A, Angelina County, TX - Analytical Data

Date	Specific Conductance (umho/cm)	Temperature (deg C)	Dissolved Arsenio (ug/L)	Dissolved Banum (ug/L)	Dissolved Cadmium (ug/L)	Dissolved Chromium (ug/L)	Dissolved Copper (ug/L)	Dissolved Lead (ug/L)	Dissolved Nickel (1991.)	Dissolved Selenium (ug/L)	Ammonta (mg/L)	Calcium (mg/L)	Chloride (mg/L)	iron (mg/L)	Magneslum (mg/L)	Polassium (mg/L)
02/07/96	3020	20.0	20.0 <5.0	<500	<1.0	<30	<20	<5.0	<20	<5.0	0.80	187	960	<0.05	40.0	11.6
96/60/50	2890	21.0	21.0 <5.0	<500	<1.0	<30	<20	<5.0	<20	<5.0	0.87	179	889	60'0		13.6
08/14/96	3030	21.0	<5.0	<500	<1.0	<30	<20	<5.0	<20	<5,0	0.76	176	623	<0.05	39.8	15.2
11/06/96	2780	20.5	<5.0	<500	<1,0	<30	<20	<5.0	<20	<5.0	0.63	168	929		42.6	10.3
02/06/97	2620	20.0	<5.0	<500	<1.0	<30	<20	<5.0	<20	<5.0	0.92	195	627	90'0	55.6	12.0
05/07/97	2550	21.0	21.0 <5.0	<500	<1.0	<30	<20	<5.0	<20	<5.0	77.0	190	929	0.21	44.1	15.4
76/90/80	2610	22.0	22.0 <5.0	<500	<1.0	<30	<20	<5.0	<20	<5.0	1.06	178	622	0.10	41.6	0.28
11/12/97	2170	20.0	20.0 <5.0	<500	<1.0	<30	<20	<5.0	<20	<5.0	0.81	238	632	0.28	50.3	13.8
05/06/98	1950	20.5	20.5 <5.0	<500	<1.0	<30	<20	<5.0	<20	<5.0	06'0	184	641	<0.05	41.6	16.7
11/10/98	2940	20.0	20.0 <5.0	<500	<1.0	<30 ·	<20	<5.0	<20	<5.0	06.0	170	149	0.88	45.1	15.9
66/90/90	2990	20.0	<5.0	<500	<1.0	<30	<20	<5.0	<20	<5.0	1.10	204	651	0.85	53.7	12.4
11/03/99	2800	21.0	<5.0	<500	<1.0	<30	<20	<5.0	<20	<5.0	0.64	174	675	0.64	45.3	15.6
05/10/00	2850	23.0	<5.0	377	<1.0	<30	<20	<5.0	<20	<5.0	0.61	189	641	0.55	45.2	14.9
11/07/00	2940	23.0	23.0 <5.0	<500	<1.0	<30	<20	<5.0	<20	<5.0	0.65	176	618	0.09	41.4	13.5
05/09/01	3110	22.2	22.2 <5.0	<500	<1.0	<30	<20	<5.0	<20	<5.0	0.48	178	673	0.17	46.4	13.3
11/14/01	3220	20.8	20.8 <5.0	<500	<1.0	<30	<20	<5.0	<20	<5.0	0.36	192	672	0.14	58.5	14.6
05/14/02	3600	21.9	<5.0	<500	<1.0	<30	<20	<5.0	<20	<5.0	0.36	172	634	0.42	59.3	16,3
11/06/02	2790	19.9	<5.0	<500	<1.0	<30	<20	<5.0	<20	<5.0	0.57	170	999	<0.05	54.4	15.9
05/21/03	2790	20.7	<5.0	<500	<1.0	<30	<20	<5.0	<20	<5.0	89'0	204	640	0.08	52.9	14.0
11/11/03	3276	21.1	<5.0	<500	<1.0	<30	<20	<5.0	<20	<5.0	0.45	183	999	0.10	6.05	18.8
06/01/04	3200	22.6 <5.0	<5.0	<500	حا.0	<30	<20	<5.0	<20	<5.0	0.23	192	632	1.84	44.1	16,3
11/08/04	3255	23.8	23.8 <5.0	<500	<1.0	<30	<20	<5.0	<20	<5.0	0.35	174	604	1,97	47.2	14.4
05/02/05	3311	23.0	23.0 <5.0	<500	<1.0	<30	<20	<5.0	<20	<5.0	0.11	200	670	2.04	55.5	15.4
11/07/05	3292	23.1	<5.00	<500	<1.00	<30	<20	<5.00	<20	<5.00	0.56	196	617	1,79	48.6	13.5
05/31/06	3326	21.5	<5.00	<500	<1.00	<30	<20	<5.00	<20.0	<5.00	0.68	220	689	2.00	53.3	15.0
08/14/06	1	1	1	1	1	1	ı	I	ſ	ı	1	ì	ũ	1	ı	1
11/07/06	2940	22.3	<5	<200	-	<30	<20	\$	~	\$	0.73	190	641	2.15	49.9	16.4
02/14/07	2925	16.6	1	1	1	-	į	t	Ţ	ı	1	1	1	ī	1	1
05/02/07	2972	22.6	<5.00	63.0	વ	7	<5	<1.00	\$	\$	0.54	204	639	2.41	51.9	18.0
08/27/07	3464	27.9	ı	ı	1	ı	4	1	ī	1	1	1	1	1		
11/07/07	3437	21.3	<5 5	65.0	7	V	<5	1 >	5.00	<5	0.85	180	660	08.6	750	45.0

Angelina County Waste Management Center, Permit No. MSW 2105A, Angelina County, TX - Analytical Data

Nickel (up/L)																												(2)			5.90
7	1	ı	Ī	1	1	1	Ĭ,	1	1	1	ı	1	T	1	1	1	1)	1	1	ţ	1	1	1	1	₹	\$	\$	₽	\$	
(növ)	1	i	1	1	1	t	1	1	ι	1	1	1	Э.	1	1	t	ī	1	1	1	£	1	t	1	1	\$	\$	\$	41.00	<1.00	٧
Copper (ug/L)	1	4	1	1	1	1	ā	1	1	1	ı	1	4	1	1	1	1	1	1	1	ı	1	1		1	\$	<5	<5	\$5	<5	55
Cobatt (ug/L)																	Ì														100
Chromium (ug/L)	1	J.	1	1	J	1	ı	1	1	1	1	1	I	10	ı	1	1	1	1	1	1	4	1	1		₹	1.00	1.00 <1	₹	⊽	1 00
	1.	ť	1	.12	1	1	ı	ŧ	t	į	1	1	1	1	1	T	t	1	t	1	t	1	1	1	1	⊽			۲	۲	
Cadmium (ug/L)	1	1	1	1	.1	1	í	f	ŧ	1	1	ī	1	t	1	1	4	1	1	1	1	T.	1	1	1	₹	Ų.	۷.	۲,	√	7
Beryllium (ug/L.)		0																					4			-		1	1	1	
	.1	1	1	1	1	1	1	Ţ	J	1	1	4	4.	1	1	1.	1	1	1	1	1	1	1	1	+	59.0 <1	62.0 <1	59.0 <1	62.0 <1	61.0 <1	RE 0 -1
Barlum (ug/L)	í	1	1	1	1	Í	î	ī	ī	ī	î	1	i	1	Í	i	í	1	1	1	1	1	1		i		Î				
Arsenic (ug/L.)		ı	1	_	1	-	1	ī	î	Î		1	1	1	1	ì	1	1	1		1	1	1	1	1	<5.00	<5.00	:5.00	<5.00	<5.00	30
Antimony (ug/L)												,																			
pH (std units)	6.57	6.29	6.38	69.9	6.87	6.81	6.55	6,63	6.67	6.77	6.85	6.95	7.30	6.87	7.25 -	6.49	6,95	6,65	7.06	6.84 -	6.98	6.92	7.02 -	6.77	6.58 -	<5	6.41 <5	8.48 <5	6.63 <5	6.73 <5	700
Total Alkalinity as CaCO3 (mg/L)	380	368	408	368	380	376	422	386	376	380	392	332	392	368	336	374	376	398	286	386	390	380	384	397	374	1	398		381		000
TDS (mg/L) To	1800	1810	1940	1970	2060	1970	1960	1920	2030	2000	2010	2150	1900	1910	2000	1990	2010	1940	2120	1950	2030	1880	2000	1860	2040	1.	1970	Ĩ	3020	1	0000
	328	02	Ä	23	380	23	313	358	349	00	1	275	54	33	98	90	347	458	380	325	364	373	0	350	11	1	28	- 1	454	ı	007
Sufate (mg/L)	32	380	334	233	36	323	31	36	34	360	347	27	324	323	286	390	34	45	36	35	36	37	340	36	387		387		45		,
Sodium (mg/L)	507	501	416	449	446	440	421	418	408	456	408	466	457	413	389	374	465	488	407	454	472	481	490	455	456	1	524	1	460		007
						60.0	0.13	20.0	60.0		0.29		90.0	Ť	0.23			0.19								1		1		1	
Ndrate (mg/L)	<0.05	<0.05	<0.05	<0.05	<0.05					<0.05		<0.05		<0.05		<0.05	<0.05		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	1	<0.05	ı	<0.05	1	10.0
Date	02/07/96		- 7		Ţ,	76/70/50	76/90/80	11/12/97	05/06/98	11/10/98	66/90/90	11/03/99	05/10/00	11/07/00	10/60/50	11/14/01		11/06/02	05/21/03		06/01/04	11/08/04	6	3	05/31/06	08/14/06		J	05/02/07	08/27/07	Ι.

Angelina County Waste Management Center, Permit No. MSW 2105A, Angelina County, TX - Analytical Data

			1		
Date	Selentum (ug/L)	Silver (ug/L)	Thailium (Ug/L)	Vanadium (vg/L)	Zinc (ug/L)
02/07/96	1	ű	ì	r	1
96/60/90	1	1	1	1	1
08/14/96	1	1	í	1	-
11/06/96	1	i	i	Ţ	ī
02/06/97	1	í	ì	Ţ	1
76/70/30	Ĭ	i	ī	1	I
76/90/80	1	i	Ĭ	1	1
11/12/97	1	i	1	1	-
05/06/98	1	ī	ĭ	7	T
11/10/98	1	i	ī	1	T
66/90/90	1	1	ì	1	ĭ
11/03/99	1	1	1	1	j
05/10/00	1	1	1		ī
11/07/00	1	1	T	1	1
05/09/01	î	1	ì	ſ	í
11/14/01	Ť	1	1	1	1
05/14/02	1	i	1	1	1
11/06/02	1	ī	1	1	ĵ
05/21/03	1	i	ĺ	1	ī
11/11/03	1	i	ı	ī	1
06/01/04	Į.		Ĺ	1	Į
11/08/04	1		1	1	î
05/02/05	1	7	1	1	ī
11/07/05	1	ţ	1	1)
05/31/06	1	-	Ī	1	Ī
08/14/06	<5	€	<5	1.00	<5
11/07/06	<5	\$	<5	₹	<5
02/14/07	<5	<5	<	<1	<5
05/02/07	<5	<5	<1	4	\$
08/27/07	<5	\$	₽	<1	<5
11/07/07	<5	45		7	0 80

Angelina County Waste Management Center, Permit No. MSW 2105A, Angelina County, TX - Analytical Data

								MW-1B								
Dale	Acetone (ug/L)	Acrylontinie (ug/L)	Benzene (ug/L)	Bromochloro melhane (ug/L)	Bromodichloro melhane (ug/L)	Bromoform (ug/L)	Carbon disulfide (ug/L)	Carbon tetrachloride (ug/L)	Chlorobenzene (ug/L)	Chloroethane (ug/L)	Chloraform (ug/L)	Dibromochloro methane (up/L)	1,2-Dibromo-3- chloropropane (ug/L)	1,2-Dibrompethane (ug/L)	o-Dichlorobenzene (eg/L)	p-Dichlorobenzeno (ug/L)
02/07/96	<20	410	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<20	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
96/60/50	<20	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<20	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
08/14/96	<20	<10	<5.0	<5.0	<5.0	<5,0	<5.0	<5.0	<5.0	<20	<5.0	<5.0	<5,0	<5.0	<5.0	<5.0
11/06/96	<20	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5,0	<20	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
02/06/97	<20	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<20	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
76/70/50	<20	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<20	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
76/90/80	<20	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<20	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
11/12/97	<20	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<20	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
86/90/50	<20	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<20	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
11/10/98	<20	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5,0	<5.0	<20	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
66/90/90	32.2	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<20	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
11/03/99	<20	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5,0	<5.0	<10	<5,0	<5.0	<5.0	<5.0	<5.0	<5.0
05/10/00	<20	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
11/07/00	<20	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
05/09/01	<20	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
11/14/01	<20	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
05/14/02	<20	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
11/06/02		<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
05/21/03	<20	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
11/11/03	<20	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
06/01/04	<20	410	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
11/08/04	<20	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
05/02/05	<20	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
11/07/05	<20	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
05/31/06	<20	410	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
11/07/06	<5	<10	\$	\$	\$	\$	55	\$	<5	<10	<5	<5	<5	<5	5	<5
05/02/07	4 5	410	\$	\$	-\$	\$	45	\$	<5	<10	<5	<5	<5	<5	<5	₹
11/07/07	<5.0	<10	<5.0	<5.0	<50	<5.0	<50	<5.0	<5.0	<10	<50	<5.0	<5.0	<5.0	<5.0	<5.0

Angelina County Waste Management Center, Permit No. MSW 2105A, Angelina County, TX - Analytical Data

								MW-1B								
Dale	trans-1,4-Dichloro-2- butene (ug/L)	1,1-Dichloroethane (ug/L)	1,2-Dichloroethane (Ug/L)	1,1-Dichieroethylene (ug/L)	cts-1,2-Dichloro ethylene (ug/L)	Irans-1,2-Dichloro ethylene (ug/L)	1,2-Dichloropropane (ug/L)	cls-1,3-Dichloro propere (ug/L)	trans-1,3-Dichloro propene (ug/L)	Ethytbenzene (ug/L.)	2-Hexanone (ug/L)	Methyl bromida (ug/L)	Methyl chloride (ug/L)	Methylene bromide (ug/L)	Methylene chloride (ug/L)	Methyl ethyl ketone (ug/L)
02/07/96	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<20	<50	<5.0	<5.0	<20
05/09/96	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<20	<50	<5.0	<5.0	<20
08/14/96	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<20	<50	<5.0	<5.0	420
11/06/96 <5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<20	<50	<5.0	<5.0	<20
02/06/97	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<20	<50	<5.0	<5.0	<20
05/07/97	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	420	<50	<5.0	<5.0	<20
76/90/80	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	410	<20	<50	<5.0	<5.0	<20
11/12/97	<5.0	<5,0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<20	<50	<5.0	<5.0	<20
05/06/98	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	420	<50	<5.0	<5.0	<20
11/10/98	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<20	<50	<5.0	<5.0	<20
66/90/90	<50	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<20	<50	<5.0	<5.0	420
11/03/99	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<10	<5.0	<5.0	<20
05/10/00	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<10	<5.0	<5.0	<20
11/02/00	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<10	<5.0	<5.0	<20
05/09/01	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<10	<5.0	<5.0	<20
11/14/01	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<10	<5.0	<5.0	<20
05/14/02 <5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<10	<5.0	<5.0	<20
11/06/02	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<10	<5.0	<5.0	<20
05/21/03	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<10	<5.0	<5.0	<20
11/11/03 <5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<10	<5.0	<5.0	<20
06/01/04	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<10	<5.0	<5.0	<20
11/08/04	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<10	<5.0	<5.0	<20
05/02/05 <5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	410	<5.0	<5.0	<20
11/07/05	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<10	<5.0	<5.0	<20
05/31/06	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<10	<5.0	<5,0	<20
11/07/06	<5	\$	₹	\$	<5	<5	<5	\$	<5	<5	<10	\$>	<10	\$	<5	<20
05/02/07	<5	~ 5	\$	\$	<5	<5	<5	<5	<5	<5	<10	<5	<10	\$	<5	<20
11/07/07	<5.0	<50	<50	<50	<50	<5.0	<5.0	65.0	450	750	<10	<5.0	240	0 3/	750	00/

Angelina County Waste Management Center, Permit No. MSW 2105A, Angelina County, TX - Analytical Data

								MW-1B							
Methyl bolde (ugl.) Performer (ugl.) Syrene (ugl.) Tetrachkorethane Tetrachkorethane (ugl.) (ugl.) (ugl.)	4-Multyl-2. Styrene (ugl.) Tetrachloroethane (ugl.)	1,1,1,2. Tetrachloroethane (up/L)	1,1,1,2. Tetrachlorethane Tetrachlorethane (ugt.)	1,1,2,2- Tetrachloroethane (ug/L)		Tetrachloroethylene (ug/L)	Toluene (ug/L)	1,1,1-Trichloroethane (ug/L)	1,1,2-Trichloroethane (ug/L)	Trichloroelhylene (ug/L)	Trichlorofluoromethano (ug/L)	1,2,3-Trichloropropane (ug/L)	Vinyl acetate (ug/L)	Vinyl chloride (ug/L)	Vinyl acetate (Light,) Vinyl chloride (Light,) Total Xylenes (Light,)
<5.0 <10 <5.0 <5.0 <5.0	<5.0 <5.0	<5.0	<5.0 <5.0	<5.0	1	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10
<5.0 <10 <5.0 <5.0 <5.0	<5.0 <5.0	<5.0		<5.0		<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10
<5.0 <10 <5.0 <5.0 <5.0	<5.0 <5.0	<5.0		<5.0		<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10
<5.0 <10 <5.0 <5.0 <5.0	<5.0 <5.0	<5.0		<5.0		<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10
<5.0 <10 <5.0 <5.0 <5.0	<5.0 <5.0	<5.0		<5.0		<5.0	<5.0	<5.0	<5.0	<5.0	<5,0	<5.0	<5.0	<5.0	<10
<5.0 <10 <5.0 <5.0 <5.0	<5.0 <5.0	<5.0		<5.0		<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10
<5.0 <10 <5.0 <5.0 <5.0	<5.0 <5.0	<5.0		<5.0		<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10
<5.0 <10 <5.0 <5.0 <5.0	<5.0 <5.0	<5.0		<5.0		<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10
<5.0 <10 <5.0 <5.0 <5.0	<5.0 <5.0	<5.0		<5.0		<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10
<5.0 <10 <5.0 <5.0 <5.0	<5.0 <5.0	<5.0		<5,0		<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10
<5.0 <10 <5.0 <5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0		-	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10
<5.0 <10 <5.0 <5.0 <5.0	<5.0 <5.0 <5.0	<5.0 <5.0	<5.0			:5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<2.0	<10
<5.0 <10 <5.0 <5.0 <5.0	<5.0 <5.0 <5.0	<5.0 <5.0	<5.0		٧	5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<2.0	<10
<5.0 <10 <5.0 <5.0 <5.0	<5.0 <5.0 <5.0	<5.0 <5.0	<5.0		-	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<2.0	<10
<5.0 <10 <5.0 <5.0 <5.0	<5.0 <5.0 <5.0	<5.0 <5.0	<5.0		_	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<2.0	<10
<5.0 <10 <5.0 <5.0 <5.0	<5.0 <5.0 <5.0	<5.0 <5.0	<5.0		-	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<2.0	<10
<5.0 <10 <5.0 <5.0 <5.0	<5.0 <5.0 <5.0	<5.0 <5.0	<5.0			<5.0	<5.0	<5.0	<5.0	<5.0	<5,0	<5.0	<5.0	<2.0	<10
<5.0 <10 <5.0 <5.0 <5.0	<5.0 <5.0 <5.0	<5.0 <5.0	<5.0		_	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<2.0	<10
<5,0	<5.0 <5.0 <5.0	<5,0 <5,0	<5,0			<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<2.0	<10
<5.0 <10 <5.0 <5.0 <5.0	<5.0 <5.0	<5.0		<5.0		<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<2.0	<10
<5.0 <10 <5.0 <5.0 <5.0	<5.0 <5.0	<5.0		<5.0		<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<2.0	<10
<5.0 <10 <5.0 <5.0 <5.0	<5.0 <5.0	<5.0	Ī	<5.0	1	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<2.0	<10
	<5.0 <5.0	<5.0		<5.0		<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<2.0	<10
<10	<5.0 <5.0	<5.0		<5.0		<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<2.0	<10
<5.0 <10 <5.0 <5.0 <5.0	<5.0 <5.0	<5.0		<5.0		<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<2.0	40
<5 <10 <5 <5	5 5	\$		\$		\$	<5	<5	<5	<5	<5	<5	\$	7	<10
<5 <10 <5 <5 <5	\$	\$		5		<5	<5	<5	<5	₹2	<5	\$	< \$	7	<10
0 <10 <50 <50		<5.0		<5.0	1	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<2.0	<10

Angelina County Waste Management Center, Permit No. MSW 2105A, Angelina County, TX - Analytical Data

								MW-2								
Date	Specific Conductance (umho/cm)	Temperature (deg C)	Dissolved Arsenic (ug/L)	Dissolved Barlum (ug/L)	Dissolved Cadmium (ug/L)	Dissolved Chromium (ug/L)	Dissolved Copper (up/L)	Dissolved Lead (ug/L)	Dissolved Nickel (ug/L)	Dissolved Selenium (ug/L)	Ammonia (mg/L)	Calcium (mg/L)	Chloride (mg/L)	hon (mg/L)	Magnesium (mg/L)	Polassium (mg/L)
02/07/96	814	1 20.0	6.17	. <500	۷.	<30	<20	<5.0	<20	<5.0	<0.10	20.0	34.0	<0.05	3.90	1.19
96/60/50	1	1	ī	ì	Ĭ	1	Ξ.	1	Ţ	i	1	ď	ì	ı	ı	t
08/14/96	ī	1	1	1	ì	1	1	1	1	ī	1	Ţ	Ţ	1	1	ī
11/06/96	610	1 23.5	12.3	<500	<1.0	<30	<20	<5.0	<20	<2.0	Ĭ	12.0	30.0	<0.05	2.72	1.62
02/07/97	468	3 20.0	1	á	1	d	1	í	1	1	<0.10	1	i	1	1	
05/07/97	533	20.0	1	1	1	1	1	1	ī	, t	t	ı	ï	-	1	1
08/06/97	664	1 25.0	1	ı	1	1	1	ĭ	1	1	1	1	1	1	1	1
11/12/97	673	3 20.0	1	1	1	1	1	Ĭ	ī	1	1	1	I	1	í	ı
05/06/98	491		i	1	1	ı	1	ı	1	1	ì	1	1	1	j	.1
11/10/98	1	1	į	ı	1	1	1	ĵ	ī	t	ī	1	1	4	1	1
05/06/99	1	1	1	1	1	1	1	i	1	1	1	1	1	-	-	1
11/03/99	ı	1	1	1	1	1	1	t	1	1,	Ĺ	1	1	1	1	1
05/10/00	ı	1	1	1	í	1	1	ı	Ť	ı	ī	í	1	1	1	1
11/07/00	1	ĩ	î	ı	1	1	ì	1	1	1	1	į.	1	1	aj.	1
05/09/01	1	1	1	1	1	1	Ť	1	1	1	I	1	1	1	1	1
11/14/01	ī	1	1	1	t	ı	1	í	ì		t	T	i	7	ı	1
05/14/02	1	1	1	ı	ì	ī	1	1	1	1	ł	1	1	í	L	1
11/06/02	1	1	1	ì	1	ı	1	1	1	1		1	1	1	1	1
05/21/03	1	1	1	1	I	1	1	í	1	1	1	1	1	1	1	ì
11/11/03	1	ī	i	ı	· f	1	ı	1	1	1	1	1	1	1	1	1
06/02/04	1	1	t	ı	1	1	1	ī	1	1	7	-	-	1	1	1
11/09/04	1	t	1	ı	ı	t	1	ī	Ť	ī	-	ı	ı	T.	-	1
05/02/05	ı	1	ı	1	1	ĺ	1	î	-	1		-	-	1	I	1
11/07/05	1	1	1	1	t	ľ	1	ĵ	1	1	Ī	1		ı	1	1
02/30/06	t	ŧ	1	1	1	+	_	-	1	L	1	1	ī	1	1	1
08/14/06	1	1	t	1	1	t	1	1	1	ı	1	1	1	ı	ì	1
11/07/06	1	1	-	1	1		1			1		1	_	-	1	
02/14/07	.0	1	i	1	1	Į.	1	1	ı	1	I	1	1	1	ı	
05/02/07		1	1	1	1	ſ	ı	j	-	1	1	1	ī	1	Ĺ	1
08/27/07	Ĩ	1	ı	1	í	1	1	1	t	ī	1	1	1	1	1	1
11/07/07	í	1	ı	1	ı		1	. 1	1	1	1	ı	ı	d	1	1

	200		MW-Z			
Date	Nifrate (mg/L)	Sodium (mg/L)	Suifate (mg/L)	TDS (mg/L)	Total Alkalinity as CaCO3 (mg/L)	ph (sid units)
02/07/96	0.18	165	93.2	550	282	6.57
96/60/90	1	i	ī	1	1	Ť
08/14/96	1	i	1	1	1	1
11/06/96	<0.05	122	9'55	432	206	6.21
02/07/97	1	ī	1	1	Ī	6.54
26/20/50	1	Ť	ī	1	j	6.30
76/90/80	1	ı.	-1	1	1	6.21
11/12/97	1	1	1	1	1	5.97
05/06/98	ì	1	1	1	1	6.02
11/10/98	1	1	1	1	1	1
05/06/99	1	ı	1	1	Ĩ	1
11/03/99	1	ì	i	1	í	1
05/10/00	í	ŧ	Ĭ	1	ī	ı
11/02/00	1	1	i	1	j	1
05/09/01	ï	1	ì	1	j	j
11/14/01	1	1	1	1	ı	1
05/14/02	ĩ	-	L	ı	t	1
11/06/02	1	Ť	1	1	1	i
05/21/03	1	1	í	1	í.	1
11/11/03	1	t	Ĭ	ì	1	1
06/02/04	-	1	1	1	1	1
11/09/04	1	1	i	1	1	1
05/02/05	ì	1	1	1	ī	1
11/07/05	1	1	1	1	i	1
90/08/50	ī	t	1	1	3	1
08/14/06	Ť	1	ŧ		1	ı
11/07/06	_	ı	i	1	ī	1
02/14/07	ı	1	Ł	1	1	1
05/02/07	1	-	t	î	1	1
08/27/07	Ī	1	1	ī	Ī	Ţ
11/07/07	1	1	1	1	1	1

Angelina County Waste Management Center, Permit No. MSW 2105A, Angelina County, TX - Analytical Data

Date	Acetone (ug/L.)	Aerytonitrile (ug/L)	Benzene (ug/L)	Bromochloro	Bromodichloro	Bramoform (ug/L)	Carbon disulfide	MW-2	Chloroberzene	Chloroethane (upfl.)	Chloroform (ug/L)	Dibremochiore	1,2-Dibomo-3- chloropopane	1,2-Dibromoethane	o-Dichloroberizene	9
		(afe) manufact		methane (ug/L)	methane (ug/L)		(mg/L)	tetrachloride (ug/L.)	(non)			methane (ug/L)	(1/6n)	(1/0fm)		
02/07/96	<20	<10	\$	<5	\$	<5	< <u>\$</u>	<5	<5	<20	<5	<5	<5	<5.0	<5	<5
11/06/96	<20	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<20	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
02/07/97	<20	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<20	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
05/07/97	<20	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<20	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
76/90/80	<20	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<20	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
11/12/97	<20	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<20	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
05/06/98	-	1	1	1	1	ì	1	1	1	ı	1	1	1	1	1	1
11/10/98	1	1	Ī	1	ı	1	ı	i	j	1	i	1	1	1	j	1
05/06/99	ī	1	ı	ŀ	1	1	1	1	1	ı	t	1	1	1	1	1
11/03/99	1	1	ĺ	ı	-	1	1	1	ı	t	t	ı	1	1	1	1
05/10/00	-	1	1	1	î.	ı	1	1	1	i	1	1	1	1	ï	1
11/02//00	1	t	-	1	1	1	1	1	1	ι	t	1	1	1	i	1
05/09/01	1		ŕ	1	1	ı	1	ī	1	1	i	1	1	1	1	1
11/14/01	t	1	1	1	b	1	1	1	1	1	ı	1	1	1	1	1
05/14/02	1	ı	1	1	1	1	ì	ı	1	1	1	1	Ĭ	1	i	1
11/06/02	<20	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
05/21/03	<20	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
11/11/03	ı	1	ı	ı	4	1	1	ı	î	1	A	1	ı	ı	ŧ	i
06/02/04	1	1	Ī	1	1	1	1	t	1	í	t	1	ı	1	1	1
11/09/04	ī	1	1	1	I	1	1	ţ		í	1	t	1	ī	1	ı
05/02/05	<20	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
11/07/05	1	1	Ĺ	ı	ı	1	1	1		1	1	J	ı	1	1	ĭ
05/30/06	1	-	ı	1	1	î	1	1	1	1	1	ī	1	1	Ĭ	1
11/07/06	1	1	1	1	1	1	1	ī	ı	1	1	1	1	1	ı	ı
05/02/07	1	1	1	1		1	Î	1	1	1	1	1	1	ı	i	1
11/07/07	1	í	1	1	1	1	1	ı	1	1	1	1	1	ı	i	1

Angelina County Waste Management Center, Permit No. MSW 2105A, Angelina County, TX - Analytical Data

								MW-2								
Date	trans-1,4-Dichloro-2- butene (ug/L)	1,1-Dichloroethane (ug/L)	1,2-Dichloroethane (ug/L)	1,1-Dichloroethyfene (ug/L)	cis-1,2-Dichloro ethylene (ug/L)	trans-1,2-Dichloro ethylene (ug/L)	1,2-Dichloropropane (up/L)	cts-1,3-Dichloro propene (ug/L)	trans-1,3-Dichloro propene (ug/L)	Ethyberzena (ug/L)	2.Hexanone (ug/L)	Methyl bromide (ug/L)	Methyl chloride (ug/L)	Methylene bromide (ug/L)	Methylene chloride (ug/L)	Methyl ethyl kelone (ug/L.)
02/07/96	2	₩.	\$	\$	\$	₩	\$	8	< 5	\$	<10	420	<50	8	8	<20
11/06/96	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	420	<50	<5.0	<5.0	<20
02/07/97	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<20	<50	<5.0	<5.0	<20
26/20/90	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<20	<50	<5.0	<5.0	<20
26/90/80	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<20	<50	<5.0	<5.0	<20
11/12/97	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<20	<50	<5.0	<5.0	<20
05/06/98	1	Ī	ı	1	t	ī	ſ	í	1	ı	<u> </u>	1	Ť	1	1	1
11/10/98	1	ı	1	ĵ	ı	í	i	j	1	1	ı	1	ı	í	ſ	ì
05/06/99	1	1	i	1	1	1	ı	ī	1	1	ĺ	1	.1	1	1	1
11/03/99	1	f	1	1	I	1	1	i	t	1	ĭ	ı	1	1	1	1
05/10/00	1	1	Ť	1.	1	1	1	Ť	ı	ı	Ť	ı	1	1	ì	1
11/07/00	1	Ť	1	ı).	1	4	4	1	1	Í	1	1	ì	1	i
05/09/01	1	ì	i	1	ı	1	1	1	1	ı	1	ī	1	4	1	1
11/14/01	£	1	1	1	1	1	į	1	а	1	ī	1	1	Î	I	ī
05/14/02	1	f.	1	1	ī	i	i	1	1	1	1	ï	1	í	1	ı
11/06/02	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<10	<5.0	<5.0	<20
05/21/03	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<10	<5.0	<5.0	<20
11/11/03	ſ	1	í	í	Y	ī	1	1	1	1	1	1	í	1	1	1
06/02/04	-	ι	ı	ī	Ĩ	1	Í	1	1	ĭ	1	1	i	1	1	1
11/09/04	1	1	í	1	ī	ĭ	ı	1	Ť	ī	1	Ţ	1	-1	1	1
05/02/05	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<10	<5.0	<5.0	<20
11/07/05	1	T	1	ı	1	Ţ	i	-	Ī	1	1	T	ı	j	1	i
05/30/06	1	1	13	ı	1	i.	Ĺ	1	į.		ı	Ļ	1	L	1	1
11/07/06	1	ı	ı	1	T	t	ı	1	į	1	t	1	1	1	1	1
05/02/07	1	1	1	ı	1	1	1	-	E.	į.	. 1	L	1	ī	ī	1
11/07/07	1	1	1	1	1	ı	1	1	ı.	1	. 1	ī	-1	τ	ı	1

Angelina County Waste Management Center, Permit No. MSW 2105A, Angelina County, TX - Analytical Data

								MW-2							
Date	Methyl kodida (ug/L.)	4-Methyf-2- pentanone (ug/L)	Styrene (ug/L)	1,1,1,2- Tetrachloroethane (ug/L)	1,1,2,2- Tetrachloreethane (ug/L)	Tetrachloroethylene (ug/L)	Toluene (ug/L.)	1,1,1-Trichloroethane (ug/L)	1,1,2-Trichloroethane (ug/L)	Trichloroethylene (ug/L)	Trichlorofluoromethane (Lg/L)	1,2,3-Trichloropropane (ug/L)	Vinyl acetate (ug/L)	Vinyl chloride (ug/L)	Vinyl acetate (Ug/L) Vinyl chloride (ug/L) Total Xylenes (Ug/L)
02/07/96	3 <5	<10	<5	<5	<5	<5	<5	\$	< 2	<5	\$	\$	<5	\$	<10
11/06/96 <5.0	3 <5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10
02/07/97	7 <5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10
05/07/97	7 <5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10
08/06/97	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10
11/12/97	45.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10
05/06/98	1	1	ι	1	1	T	1	Ī	Ī	1	1	1	1	-	i
11/10/98		1	1	ĺ	ī	1	1	1	1	1	1	1	1	1	1
05/06/99	1	ı	ī	î	1	1	ı	j	1	1	1	1	ı	1	1
11/03/99	1	1	Ĭ	1		1	1	1	.1	ı	1	1	ı	1	1
05/10/00	-	1	ι	1	1	1	1	i	1	1	t	1	1	1	1
11/07/00	-	1	1	ī	1	1	1	1	1	1	1	_1	.1		1
05/09/01	ŀ	1	1	1	1	1	î	1	1	J	ı	1	1	1	ī
11/14/01	1	1	1	1	1	1	, i	1	1	1	ſ	Ī	1	ĺ	
05/14/02	-	1	1	1	1	i	1	1	1	1	1	1	i	ī	Ţ
11/06/02	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<2.0	<10
05/21/03	1 <5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<2.0	<10
11/11/03	it.	1	1	Î	1	1	ı	1	ī	1.	ı	1	1	í	1
06/02/04	1	1	1	Ĺ	1	ı	í	1	I	1	1	1		1	1
11/09/04	=	1	1	1	1	ĵ	ī	ı	i	1	ĩ	1	4	ı	1
05/02/05	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<2.0	<10
11/07/05	1	ī	0	ı	1	í	ī	1	1	1	1	1	1	1	ī
05/30/06	1	ı	-[î	ı	1	t	1	1	1	ı	T	i	1	j
11/07/06	l	ī	1	t	í	t	ī	1	1	1	ī	i	1	ī	1
05/02/07		i	1	ı	í	1	i	1	1	1	1	1	-1	J	
11/07/07	1	ì	,	1	i	1									

Angelina County Waste Management Center, Permit No. MSW 2105A, Angelina County, TX - Analytical Data

								MW-3								
Date	Specific Conductance (umholom)	Temperature (deg G)	Dissolved Arsenio (ug/L)	Dissolved Barlum (ug/L)	n Dissolved Cadmium (ug/L)	tum Dissolved Chromium (ug/L)	Dissolved Copper (ug/L)	Dissolved Lead (ug/L)	Dissolved Nickel (ug/L)	Dissolved Selentum (vg/L)	Ammonia (mg/L)	Calcium (mg/L)	Chloride (mg/L)	fron (mg/L)	Magnesium (mg/L)	Polassium (mg/L)
96/20/20	2950	20	<5.0	<500	4.0	<30	<20	<5.0	<20	6.93	0.22	114	437	<0.05	26.0	3 60
05/09/98	2820			<500	41.0	<30	<20	<5.0	<20	7.30	<0.10	113	405	405 <0.05	29.2	5.10
OBMA/OR	2920				<1.0	<30	<20	<5.0	<20	12.3	<0.10	88.0		393 <0.05	27.0	6.10
11/06/96	2680		<5.0		<1.0	30	<20	<5.0	<20	<5.0	<0.10	99.2	316	<0.05	25.5	3.86
CONSOLO	2540		\$50	<500	<1.0	<30	<20	<5.0	<20	5.30	<0.10	131	412	<0.05	37.1	4.40
7017070	2340		<50	<500	×1.0	<30	<20	<5.0	<20	14.4	<0,10	0'66	406	<0.05	24.4	5.20
08/08/07	2300			<500	<1.0	<30	<20	<5.0	<20	15.3	<0.10	99.0		415 <0.05	24.7	3.81
11/12/07	2210				<1.0	<30	<20	<5.0	<20	<5.0	<0.10	118		410 <0.05	29.3	5.30
DEIDEIDE	1847			0 <500	<1.0	<30	<20	<5.0	<20	8.70	<0.10	104	410	<0.05	24.8	4.90
41/10/08	DARC		<50	<500	<1.0	<30	<20	<5.0	<20	<5.0	<0.10	114	395	<0.05	27.4	6.01
05/08/09	2890			5.35 <500	<1.0	<30	<20	<5.0	<20	<5.0	0,16	107	410	<0.05	31,1	5.18
11/03/00	2868			3 <500	<1.0	<30	<20	<5.0	<20	<5.0	<0.05	102	437	0.08	3 27.6	6.01
05/10/00	2670				414 <1.0	≪30	<20	<5.0	<20	<5.0	<0.05	107	394	394 <0.03	26.2	5.38
44/07/00	OPAC			<500		<30	<20	<5.0	<20	<5.0	<0.05	99,2		348 <0.05	32.4	5.90
05/09/01	2630	0	<5.0	_	<1.0	<30	<20	<5.0	<20	<5.0	<0.05	102	426	<0.05	28.4	Ì
11/1/1/1/1	3030				<1.0	<30	<20	<5.0	<20	<5.0	<0.05	126	384	<0.05	35.8	6.07
05/14/02	3100		<5.0	<500	<1.0	<30	<20	<5.0	<20	8,56	<0.05	84.8		404 <0.05	24.6	5.57
11/08/02	2570			<500	<1.0	<30	<20	<5.0	<20	<5.0	<0.05	102		396 <0.05	30,4	5.92
05/04/03	2570			<500	41.0	<30	<20	<5.0	<20	5.48	<0.05	108	393	<0.05	26.3	5.16
44/44/03	2775		200	6.42 <500	4.0	<30	<20	<5.0	<20	<5.0	<0.05	99,4	366	<0.05	26.5	6.27
00110100	2814	c		6.00 <500	4.0	<30	<20	<5.0	<20	<5.0	<0.05	88.2	406	<0.05	23.9	4.97
11/09/04	2752			4 <500	4.0	<30	<20	<5.0	<20	<5.0	<0.05	86,6	413	0.10		
08/03/05	2710			96 <500	4.0	<30	<20	<5.0	<20	<5.0	<0.05	91.4		447 <0.05	25.6	
11/08/05	2711		<5.00	<500	<1.00	<30	<20	<5.00	<20	<5.00	<0.05	85.8		384 <0.05	23.5	
05/31/06	2755		-	-	۲۰,00	<30	<20	<5.00	<20.0	<5.00	<0.05	92.2		413 <0.05	29.2	5.79
DRIAME	1	1	1	1	1	ĭ	ī	1	í	1	1	1	ī	1	1	1
11/08/06	2428	22.81	<5	<500	٧	<30	<20	<5	<5	\$	<0.05	86.1	385	<0.05	24.2	7.54
02/14/07	2400	15.59	1	1	1	1	À	1	1	1	1	1	1	1	1	1
05/02/07	2421		<5.00	73	73.0 <1	7	\$	<1.00	10.0	\$	<0.05	106	374	0.01	1 25.4	5.96
08/27/07	2772	27.45	ī	ı	1	1	1	ī	1	1	1	1	ı	(1	1
70170175	27.49	20.10	6.00		740 <1	V	\$	⊽	7.00	\$	<0.05	80.0		370 <0.05	22.0	07.0

Angelina County Waste Management Center, Permit No. MSW 2105A, Angelina County, TX - Analytical Data

Total Alkalinity as CaCO3 (mp/L)	dy as	pH (std units)	Antimony (ug/L.)	Arsenic (ug/L)	Barlum (ug/L)	Beryllum (vg/L)	Cadmium (ug/L)	Chromium (ug/L)	Coball (ug/L)	Copper (ug/L)	Lead (ug/L)	Nickel (ug/L)
	546	6,55	4	Ĭ	1	1	ĺ	L	į	1	1	1
546	9	6.24	1	1	i	1	1	1	1	1	1	1
540	0	6.23	1	1	4	T.	ı	ı	1	ı	1	1
585	100	6.67	ı	i	1	1.	1	ı	1	ı	1	-1
541		6.78	1	ı	1	1	ī	Ĭ	í	1	1	į
544		6.43	+	î	1	í	1	1	ĭ	1	1	1
564	_	6.81	1	1	1	1	1	1	1	1	1	1
550	-	6.57	1	1	1	1	1	ı	1	1	ī	t
548	-	6,68	Į,	1	1	1	i	1	1	Į.	1	1
538		6.79	Í	1	1	1	1	1	1	1	1	1
570		6.73	-	1	ì	ı	1	1	1	1	i	Ť
476		6.77	1	ı	1	1	1	1	t	ì	i	1
574	-	7.48	-	ı	1	í	1	1	t	i	1	1
526		6.98	Ī	1	ı	i	Ť	t	1	i	.1	J
528		7.17	1	ı	£	i	ι	Ĭ	1	ı	1	1
536		7.53	t	1	1	ı	1	1	í.	1	1	1
540	. 11	6,99	ì	1	1	i	1	1	1	1	1	ı
542		6.62		1	11	1	1	ì	1	ì	ı	ŧ
548		7.35	ı	1	1	1	1	1	I	i	1	1
220		6.84	1	1	-	Ī	í	i	ſ	1	ĭ	1
530		6.82	ı	1	1	1	1	ì	1	1	1	1
512		6.81	T.	1	1	-	1	ĺ	t	t	1	1
516		6.07	1	1	1	Į	1	ì		1	Ĭ	ι
553		6.74	ī	1	Î	1	Ā	ı	1	ī	1	1
534		6.52	1	ì	î	1.	1	1	ī	1	ī	t
	- 0	1	<5	<5.00	72.0	V	₽	₹	₹	\$	\$	< 5
260	_	6.54	<5	<5.00	75.0	₹.	₹	1.00	₽	\$	\$	5.00
	۰	7.50	<5	69.9		7	۲	1.00	۲	\$	\$	9.00
548		6.67	5>	6.74	73,0	5	₽	⊽	5,00	\$	<1.00	10.01
	10	- ALC: N	<55	6.33	71.0 <1		7	₹	₹	<5	<1.00	\$
540		6.64 <5	2						The second secon			

		Z	MW-3		
Date	Selenium (ug/L)	Silver (ug/L)	Thallium (ug/L)	Vanadium (ug/L)	Zinc (ug/L)
02/07/96	ı	1	í	1	k
96/60/90	-	1	1	1	1
08/14/96	1:	1	-	t	1
11/06/96	ı		ì	1	1
02/06/97	T	1	1	t	j
76/70/50	1	1	1	1	ı
76/90/80	1	Ť	Ĺ	1	Ţ
11/12/97	ı	1	1	ı	L
05/06/98		1	1	1	t
11/10/98	í	1	4	ţ	1
05/06/99	1	ı	1	1	I:
11/03/99	1	ı	i	1	i
05/10/00	1	1	Ĺ	1	J
11/07/00	1	î	i	-	J.
05/09/01	ſ	T	í	1	1
11/14/01	1	П	ī	T	-
05/14/02	1	1	ī	1	Î
11/06/02	1	1	1	1	Î
05/21/03	1	1	ī	ı	ī
11/11/03	ı	1	Ĩ	1	Ĩ
06/01/04	I	1	ì	ï	i
11/09/04	4	1	Į.	1	Ĭ
20/60/50	1.	1	1	1	1
11/08/05	1	1	1	1	Ť
05/31/06	1	1	1	1	ī
08/14/06	9'00'9	5	\$5	1.00	29.0
11/08/06	\$	45	<5	1,00	12.0
02/14/07	9009	<5	۲	₽	18,0
05/02/07	₹	<5	7	7	11.0
08/27/07	<5	<5	7	1.00	29.0
11/07/07	<5	₹	₹	2.70	14.0

Angelina County Waste Management Center, Permit No. MSW 2105A, Angelina County, TX - Analytical Data

								MW-3								
Acriene (ug/L) Acrientile (ug/L) Benzene (ug/L) Benzene (ug/L) Benzene (ug/L) Carbo melhane (ug/L) Benzenolosm (ug/L) Carbo	Actriachtile (Lgl.) Burzane (Lgl.) Bernzeller Bernzeller Bernzeller (Lgl.) meltane (Lgl.) meltane (Lgl.)	Bromochloro Bromoderkoro Bromoform (ug/L) methane (ug/L)	Bromodichloro methane (ug/L)	Втотогот (ид/L)		Carbo	Carbon disulfide (ug/L)	Carbon telrachloride (ug/L)	Chlorobenzeno (ug/L)	Chloroethane (ug/L)	Chloroform (ug/L)	Dibromochloro methane (ug/L)	1,2-Dibramo-3- chloropropane (ug/L)	1,2-Dibromoethane (ug/L)	o-Dichlorobenzene (ug/L)	p-Dichlorobenzene (ug/L)
<20	<5 <5 <5	<5 <5 <5	<5 <5	<5		\$		<5	<5	<20	<5 5	\$	\$	<5.0	<5	<5
<20 <10 <5.0 <5.0 <5.0 <5.0	<5.0 <5.0 <5.0 <5.0	<5.0 <5.0 <5.0	<5.0 <5.0	<5.0	0	v.	<5.0	<5.0	<5.0	<20	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
<20 <10 <5.0 <5.0 <5.0 <5.0	<5.0 <5.0 <5.0 <5.0	<5.0 <5.0 <5.0	<5.0 <5.0	<5.0	0		<5.0	<5.0	<5.0	<20	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
11/06/96 <20 <10 <5.0 <5.0 <5.0	<5.0 <5.0 <5.0 <5.	<5.0 <5.0 <5.	<5.0 <5.	\$.	<5.0		<5.0	<5.0	<5.0	<20	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
<20 <10 <5.0 <5.0 <5.0 <5.0	<5.0 <5.0 <5.0 <5.	<5.0 <5.0 <5.	<5.0 <5.	<5	<5.0		<5.0	<5.0	<5.0	<20	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
<20 <10	<5.0 <5.0 <5.0	<5.0 <5.0	<5,0		<5.0		<5.0	<5.0	<5.0	<20	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
40	<5.0 <5.0 <5.0	<5.0 <5.0	<5.0		<5.0		<5.0	<5.0	<5.0	<20	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
<20 <10 <5.0 <5.0 <5.0	<5.0 <5.0 <5.0	<5.0 <5.0	<5.0		<5.0		<5.0	<5.0	<5.0	<20	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
<20 <10	<5.0 <5.0 <5.0	<5.0 <5.0	<5.0		<5.0		<5.0	<5.0	<5.0	<20	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
<20 <10 <5.0 <5.0 <5.0	<5.0 <5.0 <5.0	<5.0 <5.0	<5.0		. <2.0		<5.0	<5.0	<5.0	<20	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
<20 <10 <5.0 <5.0 <5.0	<5.0 <5.0 <5.0	<5.0 <5.0	<5.0		<5.0		<5.0	<5.0	<5.0	<20	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
<20 <10 <5.0 <5.0 <5.0	<5.0 <5.0 <5.0	<5.0 <5.0	<5.0		<5.0		<5.0	<5.0	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
<20 <10 <5.0 <5.0 <5.0 <5.0	<5.0 <5.0 <5.0 <5.0	<5.0 <5.0 <5.	<5.0 <5.	\$	<5.0		<5.0	<5.0	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
<10 <5.0 <5.0 <5.0 <5.0	<5.0 <5.0 <5.0 <5.	<5.0 <5.0 <5.	<5.0 <5.	\$	<5.0		<5.0	<5.0	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
<20 <10 <5.0	<5.0 <5.0 <5.0 <5.0	<5.0 <5.0 <5.	<5.0 <5.	<5.	<5.0	24	<5.0	<5.0	<5.0	<10	<5.0	<5.0	<5.0	<5,0	<5.0	<5.0
<20 <10 <5.0 <5.0 <5.0 <5.0	<5.0 <5.0 <5.0 <5.	<5.0 <5.0 <5.	<5.0 <5.	₩.	<5.0		<5.0	<5,0	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
<20 <10 <5.0 <5.0 <5.0 <5.0	<5.0 <5.0 <5.0 <5.	<5.0 <5.0 <5.	<5.0 <5.	₹.	<5.0		<5.0	<5.0	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
<20 <10 <5.0 <5.0	<5.0 <5.0 <5.0 <5.	<5.0 <5.0 <5.	<5.0 <5.	\$	<5.0		<5.0	<5.0	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
<10 <5.0 <5.0 <5.0 <5.0	<5.0 <5.0 <5.0 <5.	<5.0 <5.0 <5.	<5.0 <5.	\$	<5.0		<5.0	<5.0	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
<20 <10	<5.0 <5.0 <5.0 <5.	<5.0 <5.0 <5.	<5.0 <5.	<5.	<5.0		<5.0	<5.0	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
<20 <10 <5.0 <5.0 <5.0	<5.0 <5.0 <5.0	<5.0 <5.0	<5.0		<5.0		<5.0	<5.0	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
<10	<5.0 <5.0 <5.0	<5.0 <5.0	<5.0		<5.0		<5.0	<5.0	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
<20 <10	<5.0 <5.0 <5.0	<5.0 <5.0	<5.0		<5.0		<5.0	<5.0	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
-	<5.0 <5.0 <5.0	<5.0 <5.0	<5.0		<5.0		<5.0	<5.0	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
) <10 <5.0	<5.0 <5.0 <5.0	<5.0 <5.0	<5.0		<5.0		<5.0	<5.0	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
<10 <5	\$ \$ \$	- 65	\$		\$		<5	<5	<5	<10	<5	<5	<5	5	<5	<5
<10 <5 <5	<5 <5 <5	<5 <5	\$		\$		\$	\$	<5	<10	₹2	\$	\$	<5	<5	<5
<5.0 <10 <5.0 <5.0 <5.0 <5.0	<5.0 <5.0 <5.0	<5.0 <5.0	<5.0		<5.0		<5.0	<5.0	<5.0	<10	<5.0	<5.0	<5.0	<50	<50	<5.0

Angelina County Waste Management Center, Permit No. MSW 2105A, Angelina County, TX - Analytical Data

								MW-3								
Date	trans-1,4 Dichloro-2- butene (ug/L)	1,1-Dichloroelhane (ug/L)	1,2-Dichloroethane (ug/L)	1,1-Dichloroethylene (ug/L.)	cls-1,2-Dichioro ethylene (ug/L)	Irans-1,2-Dichloro ethylene (ug/L)	1.2-Dichloropropane (ug/L)	cis-1,3-Dichloro propene (ug/L)	trans-1,3-Dichloro propene (ug/L)	Ethylbenzena (ug/L)	2-Hexanone (ug/L)	Methyl bromide (ug/L)	Methyl chloride (ug/L)	Methylene bromide (ug/L)	Methylene chloride (ug/L)	Methyl ethyl ketone (ug/L)
02/07/96	45	\$	<5	<5	\$	\$	\$5	\$	<5	< 5	<10	<20	<50	\$5	<5	<20
96/60/50	1 <5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<20	<50	<5.0	<5.0	<20
08/14/96	1 <5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<20	<50	<5.0	<5.0	<20
11/06/96	. <5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<20	<50	<5.0	<5.0	<20
02/06/97	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<20	<50	<5.0	<5.0	<20
05/07/97	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<20	<50	<5.0	<5.0	<20
08/06/97	<5.0	<5.0	<5.0	<5.0	<5.0	<5,0	<5.0	<5.0	<5.0	<5.0	<10	<20	<50	<5.0	<5.0	<20
11/12/97	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	حا0	<20	<50	<5.0	<5.0	<20
05/06/98	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<20	<50	<5.0	<5.0	<20
11/10/98	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<20	<50	<5.0	<5.0	<20
05/06/99 <5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<20	<50	<5.0	<5.0	<20
11/03/99 <5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<10	<5.0	<5.0	<20
05/10/00	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	410	<5.0	<5.0	<20
11/07/00	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<10	<5.0	<5.0	<20
05/09/01	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	40	<5.0	<10	<5.0	<5.0	<20
11/14/01	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<10	<5.0	<5.0	<20
05/14/02	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	410	<5.0	<10	<5.0	<5.0	<20
11/06/02	<5.0	<5.0	€.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<10	<5.0	<5.0	<20
05/21/03	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<10	<5.0	<5.0	<20
11/11/03	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5,0	<10	<5.0	<10	<5.0	<5.0	<20
06/01/04	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	410	<5.0	<10	<5.0	<5.0	<20
11/09/04	<5.0	<5,0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<10	<5.0	<5.0	<20
05/03/05	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<10	<5.0	<5.0	<20
11/08/05	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<10	<5.0	<5.0	<20
05/31/06	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<10	<5.0	<5.0	<20
11/08/06	-	<5	<5	<5	₹	₹	<5	<5	<5	<5	<10	<5	<10	<5	<5	<20
05/02/07	$\overline{}$	~ 5	<5	<5	\$	\$5	<5	<5	<5	<5	<10	₹	<10	<5	<5	<20
11/07/07	<5.0	<5.0	<50	×5.0	<50	<5.0	<5.0	042	<5.0	C5.0	<10	45.0	710	V5.0	75.0	00/

Angelina County Waste Management Center, Permit No. MSW 2105A, Angelina County, TX - Analytical Data

								MW-3							
Date	Methyl lodide (ug/L)	4-Methyl-2- pentanone (ug/L)	Styrene (ug/L)	1,1,1,2- Telrachiorochane (ug/L)	1,1,2,2- Tetrachloroethane (vg/L)	Tetrachloroethylene (ug/L)	Toluene (vg/L)	1,1,1-Trichloroethane (ug/L)	1,1,2-Trichloroethane (ug/L)	Trichloroethylene (ug/L)	Trichloroffuoromethane (ug/L)	1,2,3-Trichioropropane (ug/L)	Vinyl acetale (ug/L)	Vinyl acetate (ug/L) Vinyl chloride (ug/L) Total Xylenes (ug/L)	Total Xylenes (up/L)
02/07/96	<5	<10	\$	\$	45	< <u>\$</u>	7.09	\$	2	<5	₹	\$	\$5	\$	c10
96/60/50	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5,0	<5.0	<5.0	<5.0	<5.0	<10
08/14/96	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10
11/06/96	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10
02/06/97	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5,0	<10
05/07/97	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<50	<10
08/06/97	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10
11/12/97	<5.0	410	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5,0	<5.0	<5.0	<5.0	<5.0	<10
05/06/98 <5.0	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<50	<10
11/10/98	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	€0	<10
05/06/99	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	410
11/03/99 <5.0	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<2.0	<10
02/10/00		<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<2.0	<10
11/07/00		<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	. <5.0	<5.0	<5.0	<5.0	<5.0	<2.0	<10
05/09/01	-	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<2.0	<10
11/14/01	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<2.0	<10
05/14/02	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<2.0	<10
		<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<2.0	<10
05/21/03		<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<2.0	<10
11/11/03		<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	42.0	<10
06/01/04	-	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5,0	<5.0	<5.0	<5.0	<5.0	<2.0	<10
11/09/04	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<2.0	<10
05/03/05	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<2.0	<10
11/08/05	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<2.0	<10
05/31/06	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0		<10
11/08/06	\$	<10	\$	\$5	₹2	<5	<5	\$	<5	\$	8	\$	\$	<2	<10
05/02/07	<5	<10	\$	<5		<5	<5	<5	<5	<5	\$	\$	\$5		<10
11/07/07	<5.0	<10	<5.0	<5.0	<5.0		<5.0	<5.0	<5.0	<5.0	<5.0	<50	<5.0	000	C10

Angelina County Waste Management Center, Permit No. MSW 2105A, Angelina County, TX - Analytical Data

										-						
Date	Specific Conductance (umho/cm)	Temperature (deg C)	Dissolved Arsenic (vg/L)	Dissolved Barlum (ug/L)	Dissolved Cadmium (ug/L)	Dissolved Chromium (ug/L)	Dissolved Copper (ug/L)	Dissolved Lead (ug/L)	Dissolved Nickel (ug/L)	Dissolved Selenium (ug/L)	Ammonia (mg/L)	Calcium (mg/L)	Chloride (mg/L)	ivon (mg/L)	Magnestum (mg/L.)	Potassium (mg/L)
02/07/96	7630	19.0	<5.0	<500	47.0	<30	<20	<5.0	<20	<5.0	<0.10	587	7 2380	<0.05	153	3.30
96/60/90	6990	19.0	<5.0	<500	<1.0	<30	<20	<5.0	<20	<5.0	<0.10	644	1 2330	<0.05	154	5.20
08/14/96	8160	23.0	<5.0	<500	<1.0	50.0	<20	<5.0	<20	<5.0	<0.10	581	1 2350	70.0	168	7.70
11/06/96	7230	22.0	22.0 <5.0	<500	<1.0	<30	<20	<5.0	<20	<5.0	<0.10	588	3 2360	<0.05	159	4.63
02/07/97	5170		20.0 <5.0	<500	<1.0	<30	<20	<5.0	<20	<5.0	<0.10	562	2140	<0.05	180	3.79
05/08/97	4240		20.0 <5.0	<500	<1.0	<30	<20	<5.0	<20	<5.0	<0.10	504		1940 <0.05	112	3.52
76/90/80	5260		<5.0	<500	<1.0	<30	<20	<5.0	<20	<5.0	<0.10	683		2080 <0.05	122	1.80
11/12/97	6160	21.5		<500	<1.0	<30	<20	<5.0	<20	<5.0	<0.10	426	3 2170	<0.05	154	5.20
05/06/98	3040	20.0		<500	<1.0	<30	<20	<5.0	33.0	<5.0	<0.10	515	1910	<0.05	114	2.70
11/10/98	6850			<500	<1.0	<30	<20	<5.0	<20	<5.0	0.12	200	2060	<0.05	155	5.68
05/06/99	5950		20.0 <5.0	<500	<1.0	<30	<20	<5.0	<20	<5.0	0.11	200	1810	<0.05	118	3,55
11/03/99	6040		<5.0	<500	<1.0	<30	<20	<5.0	<20	<5.0	<0.05	592	1890	0.08	167	6.32
05/10/00	0009	19.0	<5.0	227	<1.0	<30	<20	<5.0	<20	<5.0	<0.05	999	3 2010	<0.03	153	2.27
11/07/00	6510		26.0 <5.0	<500	<1.0	<30	<20	<5.0	<20	<5.0	<0.05	536	1930	0.06	146	5,49
05/09/01	5520		21.0 <5.0	<500	<1.0	<30	<20	<5.0	<20	<5.0	<0.05	440	1810	<0.05	141	3.12
11/14/01	7800		22.6 <5.0	<500	<1.0	<30	<20	<5.0	<20	<5.0	<0.05	528	1970	<0.05	211	5.82
05/14/02	7910	19.5	<5.0	<500	<1.0	34.0	<20	<5.0	29.6	<5.0	<0.05	480	2010	<0.05	180	5.08
11/06/02	6240		. <5.0	<500	<1.0	<30	<20	<5.0	<20	<5.0	<0.05	464	1840	70.07	174	5.31
05/21/03	6240		+	624	<1.0	<30	<20	<5.0	<20	<5.0	<0.05	568	1760	<0.05	197	4.90
11/11/03	6929		23.3 <5.0	<500	<1.0	<30	<20	<5.0	<20	<5.0	<0.05	549	1790	10.07	155	6.30
06/02/04	7165		20.2 <5.0	807	<1.0	<30	<20	<5.0	<20	12.0	<0.05	489	1780	<0.05	140	4.50
11/09/04	7195	21.6	. <5.0	<500	<1.0	<30	<20	<5.0	<20	<5.0	<0.05	449	1650	90.0	98.6	6.50
05/03/05	7085	20.4	<5.0	<500	<1.0	<30	<20	<5.0	<20	<5.0	<0.05	526	3 1740	<0.05	170	5.10
11/08/05	7199		<5.00	<500	<1.00	<30	<20	<5.00	<20	<5.00	<0.05	521	1870	<0.05	139	7.04
05/31/06	7084	22.4	<5.00	<500	<1.00	<30	<20	<5.00	<20.0	<5.00	<0.05	569	1840	<0.05	180	6,51
08/15/06	i	1	ı	1	1	ī	1	1	j	ı	ı	1	1	1)	1
11/08/06	6344	24.5	\$	<500	₽	<30	<20	<5	8.00	<5	<0.05	505	1950	<0.05	150	9.65
02/14/07	6018	15,3	ı	i	1	1	1	1	1	1	1	ľ	1	1	ī	1.
05/03/07	5994	20.3	<5.00	37.0	7	~	\$	<1.00	11.0	<5	<0.05	443	1620	10.01	155	5.87
08/28/07	6913	23.4	ι	1	1	1	1	1	t	1	1	1	1	1	1	1
11/08/07	7236	20.5	<55	40.0	-	1	5.10	~	17.0	<5	<0.05	470	1800	0.23	140	09'9

Angelina County Wasle Management Center, Permit No. MSW 2105A, Angelina County, TX - Analytical Data

		-			Tokal & Redicite		100	MW-4					-	+	H	
Nitrate (mg/L) Solitate (mg/L) TOS (mg/L) CaCO3 (mg/L) PH (sid units)	Sulfate (mg/L) TDS (mg/L) CaCO3 (mg/L)	TOS (mg/L) CaCO3 (mg/L)	Total Alkalinity as CaCO3 (mg/L)		hu (std uni	6	Antimony (ug/L)	Arsenic (ug/L)	Badum (ug/L)	Beryllium (vg/L)	Cadmium (ug/L)	Chromium (ug/L)	L) Coball (ug/L)	L) Copper (ug/L)	(Lead (vg/L)	Nickel (ug/L)
0,17 1360 895 5610 390	1360 895 5610 390	5610 390	390	390		6.31	1	1	1	1	1	1	ı	1	ī	j
0.31 1130 1100 5380 390	1130 1100 5380	2380				6.02	ι	1	-	1	1	1	í	ı	Ĩ	1
0.22 1040 1190 6360 344	1040 1190 6360	1190 6360				6.32	1	1	1	ľ	1	í	ĭ	1	1	1
0.11 1100 818 5910 368	1100 818 5910	5910				6.45	-	-	ı	1	Ĩ	ī	ı	1	ï	1
0.10 925 868 5320 402	925 868 5320	868 5320				6,57	-	1	ı	ι	1	1	1	i	1	1
623 4870	880 623 4870	623 4870				6.71	1	f	1	ī	1	F	Ť	1	1	1
0.29 891 753 5340 462	891 753 5340	5340				6.41	1	1	1	ĭ	i	1	ı	1	1	1
0.25 1070 950 5270 338	1070 950 5270	950 5270				6.61	t	1	1	4	4	ı	i	1	1	1
0.16 860 740 4820 462	860 740 4820	4820				6.57	4	1	1	1	ī	1	1	1	1	1
0.06 1040 876 5660 420	1040 876 5660	876 5660				6.67	ì	1	1	1	1	1	1	I	ì	1
0,22 851 727 4620 460	851 727 4620	4620				6.64	ı	1	I	I.	ì	1	t	1	4	1
<0.05 1000 731 4990 368	731 4990	4990				6.55	1	1	1	T	į	1	1	1	t	1
<0.05 1020 772 5350 430 -	772 5350	5350			1		ı	1	1	ī	i	1	ı	1	1	ĭ
<0.05 847 831 5110 366	831 5110	5110				6.79	1	L	1		Ť	1	1	ı	ı.	1
0,18 875 554 4700 406	875 554 4700	554 4700				7.02	1	ţ	ı	1	ď	ı	4	Ť	1	ŀ
<0.05 935 841 5650 394	841 5650	841 5650				7.79	1	1	-	ì	1	1	t	ı	1	1
<0.05 942 709 5070 444	709 5070	5070				6.74	1	1		ı	*			i	1	1
0.35 989 958 3660 458	989 958 3660	3660				6.30	1	ı	Ĩ	Î	1	1	ì	ĵ	1	í
<0.05 937 839 5890 500	839 5890	2890				6.81	ı	ı	1	ı	1	1	1	ì	t	1
<0.05 1050 860 4410 506	860 4410	4410				6.57	ĺ	T	-	Ĩ	1	1	1	î	1	Ĭ
4870	872 4870	4870				6.60	1	1	1	ī	1	ĭ	1	1	-4	ī
<0.05 978 885 . 4350 500	885 , 4350	885 , 4350				6.54	ı	1	1	Ĩ	T	1	1	1	1	ì
 <0.05 1000 822 4510 512 	822 4510	4510				6.58	1	1	ı	ι	1	1	Ţ	ĵ	4	1
<0.05 820 885 4460 513	885 4460	4460				6.50	1	1	1	1	1	1	1	ı	1	î
<0.05 775 831 4830 512	831 4830	4830				6.25	Į.	1	ı	ı	ı	1	1	1	í	ı
1	1	1	1	1		1	<5	<5.00	36	٧	₹	⊽	⊽	9.0	8.00 <5	8.00
<0.05	861 4530	4530				6.21	<5	<5.00	40 <1	₽	1.00	1.0	1.00 <1	4	4	8.00
1	1	I I	-	1		6.72	\$	<5.00	35 <1	₽	1.00	10	1.00 <1	₽	Ą	7.00
0.06 986 893 4860 556	986 893 4860	4860				6.51	<5	<5.00	36 <1	<1	<را	در	₹	<5	<1.00	8.00
1	1	1	1	1		6.13	<5	<5.00	40 <1	V	1.00	V	۲>	< 5	<1.00	8.00
<0.05 900 940 4500 400	940 4500	4500				6.37	\$	5.20	41	7	⊽	1.	1.50 2	2.50 <5	۲	19.0

							١
Date	Selenium (ug/L)	(July)	Silver (ug/L)	Thallium (ug/L)	Vanadium (ug/L)	Zinc (vg/L)	~
02/07/96	1		Ť	1	1	1	
96/60/50	1.		ï	1	L	1	
08/14/96	1		ï	I	1	1	
11/06/96	1		î	1	i,	1	
02/07/97	1		ì	1	ì	i	
05/08/97	1		ĵ	1	1	1	
76/90/80	1		í	1	i	1	
11/12/97	1		i	i	Ţ	1	
05/06/98	1		ű	1	t	1	
11/10/98	1		ı	1	i	1	
05/06/99	1		1	1	1	ı	н
11/03/99	1		Ī	4	t	1	
05/10/00	i l		1	ı	t	1.	
11/07/00	-1		ì	-	1	1.	
10/60/50	1		t	1	1	1	
11/14/01	1		i	1	T	1	
05/14/02	t		1	1	1.	î	
11/06/02	-(ſ	-	1	1	
05/21/03	T.		í	í	ď	1	
11/11/03	1		1	1	L	ĵ	
06/02/04	1		Ĭ	4	f	1	
11/09/04	1.		ì	1	1	i	
05/03/05	ı		î	J-	1	1	
11/08/05	1		1	1	1	ı	
05/31/06	ī		ĵ	1	4	1	
08/15/06	<5		44.0	<5	4.00		21.0
11/08/06	\$		<5	<5	2.00		12.0
02/14/07		8,00	<5	٦	۲,		13.0
05/03/07	<₽		<5	.	₽		13.0
08/28/07	\$		<5	V	2.00		12.0
11/08/07	<5		<5	V	₽	-	12.0

Angelina County Waste Management Center, Permit No. MSW 2105A, Angelina County, TX - Analytical Data

								MW-4								
Date	Acetone (ug/L)	Acrylanitile (ug/L)	Benzene (ug/L)	Bromochloro melhane (ug/L)	Branodichioro methane (ug/L)	Bromoform (ug/L.)	Carbon disulfide (ug/L)	Carbon tetrachloride (ug/L)	Chlorobenzene (ug/L)	Chloroethane (ug/L.)	Chloroform (ug/L.)	Dibromachloro methane (ug/L)	1,2-Dibromo-3- chloropropane (ug/L)	1,2-Dibromoethane (ug/L)	o-Dichlorabenzene (ug/L)	p-Dichlorobenzene (ug/L)
02/07/96	<20	<10	<5	\$	<5	<5	<5	~	\$	<20	\$	\$	<5×	<5.0	₹	<55
96/60/50	<20	40	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<20	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
08/14/96	<20	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<20	<5.0	<5.0	<5.0	<5.0	<50	<5.0
11/06/96	<20	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<20	<5.0	<5.0	<5.0	<50	<5.0	<5.0
02/07/97	<20	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<20	<5.0	<5.0	<5.0	<50	<5.0	<5.0
05/08/97	<20	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<20	<5.0	<5.0	<5.0	<50	<5.0	<50
76/90/80	<20	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<20	<5.0	<5.0	<5.0	<5.0	<50	<5.0
11/12/97	<20	40	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<20	<5,0	<5.0	<5.0	<50	<5.0	<5.0
05/06/98	<20	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<20	<5.0	<5.0	<5.0	<50	<5.0	<5.0
11/10/98	<20	<10	<5.0	<5.0	<5.0	<5,0	<5.0	<5.0	<5.0	<20	<5.0	<5.0	<50	50	<50	<5.0
66/90/90	<20	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	420	<5.0	<5.0	<5.0	<50	<5.0	65.0
11/03/99	<20	410	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<5.0	<5.0	<50	<5.0	<5.0
05/10/00	<20	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<50	<5.0
11/02/00	<20	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
05/09/01		<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
11/14/01	<20	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<5.0	<5.0	<50	<5.0	<5.0
05/14/02	<20	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<50
11/06/02	<20	<10	<5.0	<5.0	<5.0	0.5>	<5.0	<5.0	<5.0	<10	<5.0	<5.0	<5.0	<50	<50	<50
05/21/03		<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<50	<50
11/11/03	_	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<50	<5.0
06/02/04	<20	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<50	<5.0
11/09/04	<20	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
05/03/05	<20	40	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<50
11/08/05	<20	<10	<5.0	<5.0	<5.0	<5,0	<5.0	<5.0	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
05/31/06	<20	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
11/08/06	~ 2	~10	<5	<5	<5	<5	<5	<5	<5	<10	\$	₹	\$	<5	\$	\$
	<5	410	₹2	<5	<5	<5	<5	<5	€	<10	<5	<5	\$	<5	\$	\$5
11/08/07	<5.0	<10	<5.0	<5.0	<5.0	<5,0	<5.0	<5.0	<5.0	<10	<5.0	<50	<5.0	<50	<5.0	<5.0

Angelina County Waste Management Center, Permit No. MSW 2105A, Angelina County, TX - Analytical Data

								MW4								
Date	trans-1,4-Dichloro-2- butene (ug/L)	1,1-Dichloroethans (ug/L)	1,2-Dichloroethane (ug/L)	1,1-Dichloroethylene (ug/L)	cts-1,2-Dichloro ethylene (ug/L)	trans-1,2-Dichloro ethylene (ug/L)	1,2-Dichloropropune (ug/L)	cis-1,3-Dichloro propene (ug/L)	Trans-1,3-Dichloro propere (ug/L)	Ethylbenzene (ug/L)	2-Hexanone (ug/L)	Methyl bromide (ug/L)	Methyl chloride (ug/L)	Methylene bromide (vg/L)	Methylene chloride (ug/L)	Methyl ethyl ketone (ug/L)
02/07/96	\$ <5	45	\$	\$	<5	<5	<5	\$	\$	<5	V10	00/	03/	4,		
96/60/50	\$ <5.0	<5.0	<5.0	<5.0	<5.0	<50	<5.0	- K	/K.O	2 4		000	3	2	0	075
08/14/96	1 <5.0	<5.0	<5.0	<5.0	<5.0	<5.0	250	2.5	0 4	0.00	014	220	- C20	<0.0	<5.0	<20
11/06/96		45.0	75.0	0.00	200	0.00	0.00	0.65	0.6>	<5.0	<10	<20	<50	<5.0	<5.0	<20
20120100	2 2	0.0	20.0	63.0	0.6>	45.0	<5.0	<5.0	<5.0	<5.0	<10	<20	<50	<5.0	<5.0	<20
02/07/97		0.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<20	<50	<5.0	<5.0	<20
/6/90/cn	-	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<20	<50	<5.0	<5.0	<20
/6/90/90		<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<20	<50	<5.0	<5.0	<20
11/12/97	-	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<20	<50	<5.0	<5.0	200
05/06/98	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<20	<50	<5.0	<5.0	200
11/10/98	<5.0	<5.0	<5,0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	200	<50	<5.0	25.0	000
66/90/50	-	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	000	<50	0.50		027
11/03/99		<5.0	<5.0	<5.0	<5.0	<5.0.	<5.0	<5.0	<5.0	<5,0	<10	<5.0	<10	25.0 25.0		730
05/10/00	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	410	<5.0	40	0.54		075
11/07/00	_	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5,0	<5.0	<10	<5.0	210	75.0		025
05/09/01	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<50	<5.0	/£0	78.0	0.7	2 4		200		075
11/14/01	<5.0	<5.0	<5.0	<5.0	.5.n	75.0	037		0	000	210	0.00	OLS	0.6>		<20
05/14/02	_	<5.0	<5.0	×5.0	650	25.0	0.5	50.0	55.0	<5.0	<10	<5.0	<10	<5.0	<5.0	<20
11/08/02 <5.0	$\overline{}$	75.0	0.3			20.0	0.05	0.6>	· 0.c>	<5.0	<10	<5.0	<10	<5.0	<5.0	<20
05/14/02	200	20.0	0.0			<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<10	<5.0	<5.0	<20
44144100	0.0	20.0	C3.U	<5.0		<5.0	<5.0	<5.0	<5,0	<5.0	<10	<5.0	<10	<5.0	<5.0	<20
50/11/11		<5.0	<50	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<10			<20
		<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	40			200
11/09/04		<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10			<5.0		220
05/03/05	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10					000
11/08/05 <5.0		<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0							027
05/31/06	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	45.0						000
11/08/06	<5	\$	<5	<5	\$	\$	\$	\$	\$							02
		\$	<5	<5>	\$5	\$5	\$	\$			Ī					000
11/08/07	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	75.0							200

Angelina County Waste Management Center, Permit No. MSW 2105A, Angelina County, TX - Analytical Data

								MW-4							N
Date	Methyl lodide (ug/L)	4-Methyl-2- pertanone (ug/L)	Styrene (bg/L)	1,1,1,2. Tetrachloroethane (ug/L)	1,1,2,2- Tetrachloroethane (ug/L)	Tetrachloroethylene (ug/L)	Toluene (ug/L)	1,1,1-Trichloroethane (og/L)	1,1,2-Trichloroethane (ug/L)	Trichloroethylene (ug/L)	Trichlorofluoromethane (Up/L)	1,2,3-Trichloropropane (ug/L)	Vinyl acetate (ug/L)	Veryl acetale (1991.) Veryl chloride (1991.) Total Xylenes (1991.)	Total Xylenes (ug/L.)
02/07/96	<5	<10	\$	<5	\$	\$	\$	\$	\$	\$	\$	\$	₹9	65	<10
05/09/96	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	0	<10
08/14/96	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0		<10
11/06/96	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0		<10
02/07/97	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10
05/08/97	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10
08/06/97	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0		<10
11/12/97	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10
05/06/98	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0		<10
11/10/98	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0		<10
05/06/99	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10
11/03/99	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0		<10
05/10/00	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0		<10
11/07/00	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0		<10
05/09/01	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<2.0	<10
11/14/01	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0		<10
05/14/02	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0		<10
11/06/02	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<2.0	<10
05/21/03	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0		<10
11/11/03	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<2.0	<10
06/02/04	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<2.0	<10
11/09/04	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<2.0	<10
05/03/05	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<2.0	<10
_		<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<2.0	<10
-	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0		<5.0		<10
11/08/06	\$	<10	<5	<5	^5		<5	<5	<5	<5	<5	\$	<5	42	<10
			<5		\$	<5		<5	<5	<5	<5	\$	<5	42	<10
11/08/07	<5.0	<10	<5.0	<5.0	<5.0		<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<50	<2.0	<10

Angelina County Waste Management Center, Permit No. MSW 2105A, Angelina County, TX - Analytical Data

								MW-5								
Date	Specific Conductance (umholem)	Temperature (deg C)	Dissolved Arsenia (ug/L)	Dissolved Barium (ug/L)	Dissolved Cadmium (ug/L)	Dissolved Chromlum (ug/L)	Dissolved Copper (ug/L)	Dissolved Lead (ug/L)	Dissolved Nickel (ug/L)	Dissolved Selentum (ug/L)	Ammonia (mg/L)	Calcium (mg/L)	Chlaride (mg/L)	Iron (mg/L)	Magnesium (mg/L)	Potassium (mg/L)
02/07/96	4190	20.5	5 <5.0	<500	<1.0	<30	<20	<5.0	<20	<5.0	0.32	251	760	<0.05	0.99	11.2
96/60/90	4090	20.0	20.0 <5.0	<500	41,0	<30	<20	<5.0	<20	<5.0	0.10	262	773	<0.05	65.7	13.4
08/14/96	4150	21.0	0 <5.0	<500	<1.0	<30	<20	<5.0	<20	<5.0	0.22	253	750	0.05	5 70.8	16.3
11/06/96	3990	20.5	5 <5.0	<500	<1.0	<30	<20	<5.0	<20	<5.0	0.15	263	755	<0.05	67.3	10,3
76170120	3020	20.0	0.65.0	<500	<1.0	<30	<20	<5.0	<20	<5.0	0.44	269	717	<0.05	81.4	
76/80/50	3220	20.0	20.0 <5.0	<500	<1.0	<30	<20	<5.0	<20	<5.0	0.25	259	758	<0.05	68.0	14.7
26/90/80	3220	22.0	22.0 <5.0	<500	2.50	<30	<20	<5.0	<20	<5.0	0.18	314	762	762 <0.05	58.4	8.30
11/12/97	3270	20.0	20.0 <5.0	<500	<1.0	<30	<20	<5.0	<20	<5.0	0.49	314	191	<0.05	L'LL	14.5
86/90/50	3800	20.0	0'9>	<200	<1.0	<30	<20	<5.0	<20	<5.0	0.43	253	191	0.29	62.7	15.1
11/10/98	4220	20.0	0.6>	<500	<1.0	<30	<20	<5.0	<20	<5.0	0.54	259	757	<0.05	71.8	14.8
66/90/50	3780	21.0	(<5.0	<500	<1.0	<30	<20	<5.0	<20	<5.0	<0.10	272	773	0.32	75.1	12.2
11/03/99	3730	20.0	20.0 <5.0	<500	41.0	<30	<20	<5.0	<20	<5.0	0.31	251	774	0.46	76.3	15,9
05/10/00	3750	22.0	22.0 <5.0	319	319 <1.0	<30	<20	<5.0	<20	<5.0	0.20	256	789	0.30	6.69	14.1
11/02/00	3840	22.0	22.0 <5.0	<500	<1.0	<30	<20	<5.0	<20	<5.0	0,32	244	734	0.33	78.5	14.8
10/60/50	4070	21.0	<5.0	<500	<1.0	<30	<20	<5.0	<20	<5.0	0.13	251	792	0.29	7.69	12.1
11/14/01	4560	20,4	20,4 <5.0	<500	<1.0	<30	<20	<5.0	<20	<5.0	0.16	256	741	0.33	84.7	13.9
05/14/02	4800	19,4	19.4 <5.0	<500	<1.0	<30	<20	<5.0	<20	<5.0	0.07	248	758	0.38	78.8	15.6
11/06/02	4060	20.2	20.2 <5.0	<500	<1.0	<30	<20	<5.0	<20	<5.0	0.24	232	802	0.46	79.3	15.3
05/21/03	4060	19.8	19.8 <5.0	<500	<1.0	<30	<20	<5,0	<20	<5.0	0.21	288	741	0.32	86,2	13.1
11/11/03	4547	20.8	<5.0	<500	<1.0	<30	<20	<5.0	<20	<5.0	0.14	263	779	0.48	83.0	18.4
06/02/04	4635	22.2	<5.0	<500	<1.0	<30	<20	<5.0	<20	<5.0	<0.05	306	773	0.11	76,0	15,2
11/09/04	4678	20.9	20.9 <5.0	<500	<1.0	<30	<20	<5.0	<20	<5.0	60'0	248	746	28'0	82.0	13.4
05/03/05	4781	21.3	21.3 <5.0	<500	<1.0	<30	<20	<5.0	<20	<5.0	<0.05	301	750	<0.05	88.8	13.9
11/08/05	4917	24.6	24.6 <5.00	<500	<1.00	<30	<20	<5.00	<20	<5.00	0.15	305	676	0.37	89.4	13.7
05/31/06	4808	23.7	<5.00	<500	<1.00	<30	<20	<5.00	<20.0	<5.00	<0.05	319	727	<0.05	93.0	14.7
08/15/06	I	ĺ	î	1	1.	1	Ī	1		1			-	1	ï	1
11/08/06	4275	22.8	<5	<500	۷.	<30	<20	<5	<5	<5	0:10	293	750	0.15	84.7	15.8
02/14/07	4116	17.2	ı	1	1	1	1	1	-	ī	í	1	-	1	1	1
05/03/07	4112	21.2	<5.00	19.0	~	<1	<5	<1.00	<5	<5	<0.05	281	630	0.02	78.0	17.1
08/28/07	4785	22.1	1	1	ı	1	1	1	1	1	ī			ı.	ı	1
11/08/07	4947	196	<5	22.0 <1	7	٧	5.80	7	8.50	<5	0.31	270	740	0.78	80.0	15.0

Angelina County Waste Management Center, Permit No. MSW 2105A, Angelina County, TX - Analytical Data

	-														
5	Sodium (mg/L)	Sulfate (mg/L)	TDS (mg/L)	Total Alkalinity as CaCO3 (mg/L)	pH (std units)	Antimony (ug/L)	Arsenic (ug/L)	Barlum (ug/L)	Beryllum (ug/L)	Cadmium (ug/L)	Chromium (ug/L)	Cobalf (ug/L)	Copper (ug/L)	Lead (ug/L)	Nickel (ug/L)
1 3	736	935	2780	436	6,53	1	ĭ	i	1	1	i	1	1	ı	j
	753	1150	2880	432	6.70	1	ĺ	1	1	1	1	ı	ı	ı	Ţ
	929	126	3200	416	6.65	ı	1	1	ı	1	J	1	t	i	1
	718	794	3040	410	6.68	1	1	1	1	ī	i	ı	1	ı	1
	642	953	3120	422	6.76	1	1	t	1	1	1	1	1	ı	1
	633	882	3090	414	6.82	1	1	1	1	ı		ì	ľ	1	1
	570	940	3030	448	6,50	1	1	t	1.	ı	1	1	ì	1	ı
	604	934	3070	362	6.29	í	í	t		1.	1	1	. 1	1	1
	609	806	3130	426	6.55	1	1	1	1	1	1	1	1	1	1
	669	955	3210	432	6.73	ı	ľ	ī	ì	I	1	ı	1	1	1
	604	879	3120	440	6.77	1	1.1	ı	1	ī	1	1	1	i	1
	732	743	3260	386	6.87	ı	1	1	1	í)	ı	1	i	1
	2/29	823	2910	432	6.86	1	1	1	Ť	i	1	ı	1	ı	ĭ
	673	812	3200	422	6.77	i	1	1	J	î	ı	1	ī	1	1
	615	711	2960	432	7.12 -	1	1	ï	1	ı	ı	Ĭ	1	1	1
	571	606	3040	424	6.25 -	į	-[1	1	i	ı	1	ī	1	1
	609	811	3070	422	6.92	ĺ	1	1	1	i	1	1	1	1	ì
	749	978	3130	444	6,55	1	ī	ι	1	ĭ	1	4.	1	- (ı
(672	913	3120	436	7.06	1	1	1	i	1	1	1	j	1	í
	699	978	2990	440	6.88	1	1	1	Ĭ	Ţ	1	1	í	1	1
	728	986	3120	410	6.93	-	Ĩ	1	1		1	ı	1	1	ì
	750	1080	3220	396	6.71	ĵ	I	ı	t	£	i	1	į,	1	ı
	782	1100	3240	376	7.17	1	-1	ı	1	1	ι	1	1	1	J
	759	1290	3280	404	6.78	1	Í	1	ı	1:	1	1	t	1	J
	770	1140	3320	400	6.80	ı	1	Ť	1	t	4	1	1	1	1
	1.		1	-	_	<5	<5.00	20.0		₹	۲	₹	\$	\$	\$
	777	1280	3290	410	6.71	<5	<5.00	21.0 <1	٧	٧	1.00	1,00 <1	\$	\$	\$
1	1		1	1	7.78	<5	<5.00	20.0 <1	7	V	2.00	2.00 <1	\$	\$	\$
	822	1190	3500	409	6.58	<5	<5.00	19.0 <1	7	۷	3.00	3.00 <1	8	<1.00	\$
1	1	1	Î		6.41	<5	<5.00	22.0	<1	7	1.00	1>1	<5	<1.00	\$
	740	1200	3400	460	6.54	152	\$	23.0	V	~	3.10	07.6	5 90	-	8.00

Control Control	-
I	
0	
Y	
1	
1	1.0
1	
1	
1	
1	
1	
T	
1	
1	
1	
T	
1	
11	
1	
T	
1	
t	
1	
T	
i	
₽	
3	
3	
\$	
5	
-	

Angelina County Waste Management Center, Permit No. MSW 2105A, Angelina County, TX - Analytical Data

	Acetone (ug/L) A	<20 <10	<20 <10	<20 <10	<20 <10	<20 <10	<20 <10	<20 <10	<20 <10	<20 <10	<20 <10	<20 <10	<20 <10	<20 <10	<20 <10	<20 <10	<20 <10	<20 <10	<20 <10	<20 <10	<20 <10	<20 <10	<20 <10	<20 <10	<20 <10	<20 <10	<5 <10		<5.0
	Acrylonibile (ug/L)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	٥	0	0	0	0		
	Berzene (ug/L)	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5,0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5	<5	<5.0
	Bromochlora methane (ug/L)	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5	<5	<5.0
	Bromodichloro methane (ug/L)	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5	<5	<5.0
	Вготогот (ирл.)	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5	<5	<5.0
	Cerbon disulfide (ug/L)	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5	<5	<5.0
MW-5	Carbon letrachloride (ug/L)	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5,0	<5.0	<5.0	<5.0	<5.0	<5	<5	<5.0
	Chlorobenzene (ug/L)	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5	\$	<50
	Chloroethane (ug/L)	<20	<20	<20	<20	420	<20	<20	<20	<20	<20	<20	<10	<10	<10	<10	<10	410	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
	Chloroform (ug/L)	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	\$	<5	<5.0
	Dibromochioro melhane (ug/L)	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	\$	<5	<5.0
	1,2-Dibromo-3- chloroprepane (ug/L)	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	\$	<5	<50
	1,2-Dibromoethane (ug/L)	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	\$	\$	<5.0
	o-Dichlorobenzene (ug/L)	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	\$	<5	<5.0
	p-Dichlorobenzene (ug/L)	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	\$	\$	<5.0

Angelina County Waste Management Center, Permit No. MSW 2105A, Angelina County, TX - Analytical Data

								MW-5								
Date	trans-1,4-Dichloro-2- butene (ug/L)	1,1-Dichloroethane (ug/L)	1,2-Dichloroethane (up/L.)	1,1-Dichloroethylene (ug/L)	cls-1,2-Dichlora ethylene (ug/L)	trans-1,2-Dichloro ethylene (ug/L)	1,2-Dichloropropane (ug/L)	cls-1,3-Dichloro propene (ug/L)	Uans-1,3-Dichlora propere (ug/L)	Elhylbenzene (ug/L)	2-Hexanone (ug/L)	Methyl bromide (1990)	Methyl chloride (up/L)	Methylene bromide (ug/L)	Methylene chloride (ug/L)	Methyl ethyl ketone (ug/L)
02/07/96	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	40	<20	<50	<5.0	<5.0	062
96/60/50	-	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<20	<50	<5.0	<5.0	<20
08/14/96	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<20	<50	<50	<5.0	<20
11/06/96	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<20	<50	<5.0	<5.0	200
02/07/97	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	000	<50	<5.0	25.0	200
05/08/97	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	420	<50	<5.0	<5.0	025
08/06/97 <5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	c10	<20	<50	<5.0	<50	200
11/12/97		<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<20	<50	<50	<5.0	200
05/06/98	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<20	<50	<5.0	-5.0	220
11/10/98		<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<20	<50	<5.0	<5.0	200
05/06/99	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<20	<50	<50	55.0	200
11/03/99	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<10	<5.0	<5.0	<20
	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	~10	<5.0	<5.0	-SO
_		<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<10	<5.0	<5.0	<20
		<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<10	<5.0	<5.0	<20
		<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<10	<5.0	<5.0	<20
05/14/02		<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<10	<5.0	<5,0	<20
		<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	40	<5.0	<10	<5.0	<5.0	200
05/21/03	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<10	<5.0	<5.0	<20
		<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<10	<5.0	<50	000
06/02/04		<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<10	<5.0	<5.0	<20
11/09/04	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	0'9>	<5.0	<5.0	<5.0	<10	<5.0	<10	<5.0	<50	\$ \$00°
		<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5,0	<10	<5.0	<5.0	<20
		<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<10	<5.0	€50	<20
_		<5,0	0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<10	<5.0	<5.0	<20
11/08/06	\$	< <u>\$</u>	⟨2	<5	\$	<5	<5	₹	\$	<5	<10	\$	<10	<5	\$	<20
	<5	\$			<5	₹	<5	<5	<5	<5	<10	\$	<10	\$	\$	<20
11/08/07	<5.0	<5.0	€0.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<10	<5.0	0	000

Angelina County Waste Management Center, Permit No. MSW 2105A, Angelina County, TX - Analytical Data

	robal Xylenes (ug/L)	<10	<10	40	<10	<10	c10	<10	410	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
	Vinyl chloride (ug/L) Total Xylenes (ug/L)	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<6.0	<5.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	. 2	42	<2.0
	Vinyl acetate (ug/L)	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5	<5	<5.0
	1,2,3-Trichloropropane (ug/L)	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5	<5	<5.0
	Trichlorofluoromethane (ug/L)	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5	<5	<5.0
	Trichloroethylene (ug/L)	<5.0	<5.0	<5,0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5,0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5	<5	<5.0
	1,1,2-Trichloroethane (ug/L)	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5,0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	\$	<5	> <5.0
MW-5	1,1,1-Trichloroethane (ug/L)	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5,0	<5.0	<5	<5	<5.0
	Toluene (ug/L)	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5,0	<5	<5	<5.0
	Tetrachlomethyfene (ug/L)	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0		<5.0	<5.0	<5.0	<5.0		<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5		<5.0
	1,1,2,2- Tetrachioroethane (ug/L)		<5.0	<5.0	<5.0	<5,0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5	<5	<5.0
	1,1,1,2- Tetrachloroethane (ug/L)	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5	<5	<5.0
	Styrene (ug/L)	<5.0	<5,0	<5,0	<5.0	<5.0	<5.0	<5.0	<5,0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5	<5	<5.0
	4-Methyl-2- pentanone (ug/L)	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
	Methyl iodide (ug/L.)	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0			<5.0		<5.0	<5.0	<5.0		<5.0	<5.0			<5.0	<5.0		<5.0	<5.0		<5	<5	<5.0
	Date	> 96//0/70	> 96/60/50	08/14/96 <	11/06/96 <	> 76170120	> 76/80/50	> 26/90/80	11/12/97 <5.0	05/06/98 <5.0	11/10/98 <	05/06/99 <5.0	11/03/99 <	05/10/00 <	11/02/00 <	05/09/01 <5.0	11/14/01 <	05/14/02 <	11/06/02 <5.0	05/21/03 <5.0	11/11/03 <	06/02/04 <	11/09/04 <5.0	05/03/05 <	11/08/05 <	05/31/06 <5.0	11/08/06 <	05/02/07 <	11/08/07 <

Angelina County Waste Management Center, Permit No. MSW 2105A, Angelina County, TX - Analytical Data

Date	Specific Conductance (umha/cm)	Temperature (deg C)	Dissolved Arsento (ug/L)	Dissolved Banum (ug/L)	Dissolved Cadmium (ug/L)	Dissolved Chromium (ug/L)		Dissolved Copper (ug/L)	r Dissolved Lead (ug/L)	Dissalved Nickel (up/L)	Dissolved Selenium (ug/L)	Ammonia (mg/L)	Caldidin (mg/L)	ng/L) Chloride (mg/L)		fron (mg/L)	Magnesium (mg/L)	Polassium (mp/L)
02/07/96	9170	20.0	1 <5.0	<500	3.86		36.0 <	<20	<5.0	76.1	1 <5.0	<0.10		835	2480 <0.05	35	209	21.0
96/60/90	8590	20.5	5 <5.0	<500	2.30	<30		24.0	0 <5.0	0'08	0'<-2'0	<0.10		798	2400 <0.05	05	199	23.6
08/14/96	9670	22.0	0'<-2'0	<500	3.80		0.99	28.0	0 <5.0	0.08	0.5>	<0.10		721	2560	0.12	223	26.9
11/06/96	8340	23.0	<5.0	<500	6.93	<30		22.0	0 <5.0	0.06	0,5>	<0.10		768	2430 <0.05	35	191	18.6
02/06/97	0269	20.0	20.0 <5.0	<500	7.10	<30		27.0	0 <5.0	100	0 <5.0	<0.10		782	2570	0.12	218	21.3
05/07/97	5570	20.0	20.0 <5.0	<500	3.50	30		22.0	0 <5.0	0.03	0 <5.0	<0.10		834	2700 <0.05		186	24.7
26/90/80	6750	22.0	22.0 <5.0	<500	06'6	<30	Ī	25.0	0 <5.0	80.0	0.5>0	<0.10		928	2560	60'0	147	20.1
11/12/97	5095	21.0	<5.0	<500	10.9	<30	V	<20	<5.0	80.0	0.45.0	<0.10		722	2410	0.09	226	24.3
86/90/50	8280	20.0	0.5>	<500	16.0	<30	٧	<20	<5.0	84.0	0.5> (0.24	-		2560	20.0	220	25.6
11/10/98	8910	23.0	23.0 <5.0	<500	10.6	<30		23.0	0 <5.0	80.0	0 <5.0	0.12	2	728	2590 <0.05	35	238	25.6
05/06/99	7440	21.0	21.0 <5.0	<500	13.4	<30	V	<20	<5.0	73.8	3 <5.0	<0.10		800	2520	0.09	213	22.5
11/03/99	8570	21.0	21.0 <5.0	<500	15.2	30	V	<20	<5.0	92.8	3 <5.0	<0.05		864	2400	0.13	242	25.2
05/10/00	8190	22.0	22.0 <5.0	203	14.0	<30		24.0	0 <5.0	98.0	0 <5.0	<0.05		720	2830 <0.03	33	225	24.3
11/07/00	8750	25.0	<5.0	<500	<1.0		32.0 <	<20	<5.0	87.5	. <5.0	<0.05		9/9	2380	60.0	220	24.6
05/09/01	8490	21.2	<5.0	<500	15.0	<30	V	<20	<5.0	40.1	<5.0	<0.05		740	2580	70.0	213	22.0
11/14/01	10660	16.0	16.0 <5.0	<500	12.9		40.0 <	<20	<5.0	82.6	1 <5.0	<0.05		740	2530	0.10	286	23.7
05/14/02	1120	19.8	19.8 <5.0	<500	1.30		53.0 <	<20	<5.0	81.9	0.5>	<0.05		724	2720 <0.05	35	264	25.6
11/06/02	9730	22.5	22.5 <5.0	<500	4.81	<30	V	<20	€.0	95.3	0.5>	<0.05		728	2710	0,10	281	26.1
05/21/03	9730	19,1	19,1 <5.0	1100	2.61	<30	V	<20	<5.0	67.3	1 <5.0	<0.05		812	2460	0,11	247	20.2
11/11/03	10830	23.1	<5.0	1230	13.7	<30	100	24.0	0 <5.0	31.4	<5.0	<0.05		713	2520	0.16	249	28.1
06/01/04	11260	22.1	<5.0	1530	5.94	<30	v	<20	<5.0	37.3	1 <5.0	<0.05		681	2590	0.18	175	22.4
11/08/04	11273	22.3	22.3 <5.0	<500	14.4	<30	v	<20	<5.0	119	<5.0	<0.05		774	2810	0.20	246	23.5
05/02/05	11126	21.4	21.4 <5.0	<500	14.7	<30	v	<20	<5.0	79.9	<5.0	<0.05		838	2680	0.16	278	24.6
11/07/05	11525	26.1	<5.00	<500	6.80		36.0 <	<20	<5.00	119	<5.00	0.05	15	854	2840	0.23	255	24.5
90/02/90	11483	23.9	<5.00	<500	<1.00	<30	V	<20	<5.00	101	<5,00	<0.05		219	2990	0.20	289	24.9
08/14/06	t		ı		ľ	1	1		ı	-	1	ı	ű.	1	1		1	
11/07/06	10217	21.5	\$	<500	4.00	<30	v	<20	<5	98.0	8.00	<0.05		741	3060	0.28	258	28.6
02/14/07	9798	13.6	t	1	1	T	1		1	1	1	1	.1.	i	1	,	t	î
05/02/07	9807	19.9	19.9 <5.00	21.0	32.0	٧	<5	16	1.70	96.0	\$	<0.05		820	2520	0.21	277	30.8
08/27/07	11477	24.3	1	1	1	j	1		1	Ī	i	I	ı	-1	1		ī	î
11/07/07	11941	18.6	8.80	23.0	6.40		1 50	11.0	. ✓	130	\$	0.11		790	3000	0.23	240	28.0

Angelina County Waste Management Center, Permit No. MSW 2105A, Angelina County, TX - Analytical Data

	Nickel (ug/L)	ı	1	1	î	1	1	t	1	1	1	1		1		1	1.	1	1	i.	í	1	į.	1	ī	1	103	103	81.0	89.0	70,
	Lead (ug/L)	1	1	j	j.	1	ĵ	t	1	Ť	1	1	1	Î	1	Ţ	1	1	1	j	ľ	l	ţ	1	í	1	00'9	5.00	8.00	3.04	200
	Copper (ug/L)	ī	1	1	1	1			1	1		1	1	1	ī	î	1	-	T	1	1	1	-	1	ı	ì	<5	<5	<5	<5	4
5	Cobalf (ug/L)	1	i	Ā	1	4	1																				4.00	5,00 <5	6.00	5.00	400
	Chromium (ug/L)								1	1	1	_1	1	1	1	1	1	1	1		1	J.	1	1	-	1	1.00	1.00	1.00	1.00	
	Cadmium (ug/L)	d	4	4	4	4	1		1	1	1	1		1	1			1	1		1	L	-	1	1	-	10,0	6.00	3.00	27.0	8 DO <
	Berylium (ug/L)	1	1	1	4	1)	1	1	1	1	1	4	1	. [1	ı	1	3	1	1	1	1	-	1	-	4	1.00	1.00	1.00	1.00	4 00
	Bartum (ug/L.)	1	1	1	1	1	1	1	1	-	J	4	ď	1	1	1	1		1	1	I	1	J	1	T		21.0	23.0	20.0	21.0	24.0
WIVY-12A	Arsenic (ug/L)	1	1	1	1	1	1	1	1	1	t	1	4		1	1	1		1	1	1	1	-		1	_	<5.00	<5.00	<5.00	<5.00	<5 00 ×
	Antimony (ug/L)	1	1		1	1	1	1	1		1	1	1	1	1	1	1	1	1	1	1	1	-	-	1	4	<5	<5	<5	<5	× × ×
	pH (std units)	20.03	4.85	5,13	4.97	5,24	5.17	5.18	5.20	4.99	5.42	5.28	5.22		5.88	6.02	4.82	6.17	5.12	5.96	5.54	5.44	5.27	5.89	5.60	5.98		5,20	7.32	6.22	4 96 6
	Total Alkalinity as CaCO3 (mg/L)	36.0	30,0	32.0	34.0	28.0	26.0	74.0	26.0	32.0	32.0	70.0	40.0	- 20.0	32.0	52.0	38.0	58.0	46.0	80.0	56.0	196,0	76.0	84.0	25.0	36.0		40.0		37.2	
	TDS (mg/L)	6840	2000	8120	7250	8100	7870	8070	7660	7590	8490	7490	7710	7750	8000	7380	8430	7810	0708	8470	7610	7100	7680	7706	8140	8300	1	8450		8680	
	Sulfate (mg/L)	2360	2700	1570	2130	2030	2280	2370	2530	2530	2400	2510	2110	2300	2080	1690	2540	2080	2570	2940	2300	1920	2480	2290	2290	2240	t	2300	Ĭ	2560	
	Socium (mg/L)	1690	1650	1300	1370	1280	1280	1270	1420	1310	1500	1330	1400	1500	1390	1250	1370	1390	1560	1470	1640	1440	1600	1650	1440	1320	J	1640	1	1660	
	Nitrate (mg/L)	0.37	90'0	0.08	<0.05	90'0	60'0	0.15	0.10	60'0	<0.05	0,23	<0.05	90.0	20'0	0.16	<0.05	<0.05	0.05	60'0	90.0	0.17	<0.05	<0.05	0.57	<0.05	1	<0.05	1	<0.05	
	Date	02/07/96	96/60/50	08/14/96	11/06/96	02/06/97	76/170/20	76/90/80	11/12/97	86/90/50		66/90/50	11/03/99	05/10/00	11/07/00	10/60/50	11/14/01	05/14/02 <	11/06/02	05/21/03	11/11/03	06/01/04	11/08/04	05/02/05 <	11/07/05	> 90/06/50	08/14/06 -	11/07/06 <	02/14/07	> 05/02/07	70175180

				_	_
Date	Selenium (ug/L)	Silver (Ug/L)	Thalliom (ug/L)	Vanadium (ug/L)	Zinc (ug/L)
02/07/96	1	ı	1	j	ĵ
96/60/50	ı	1	ī	ī	Ĺ
08/14/96	ı	1	1	1	1
11/06/96	1	1	1	ī	1
02/06/97	1	1	ī	ı	1
76170130	ξ	í	1	1	i
26/90/80	1	1	ī	j	Ĭ
11/12/97	ì	T	ί	1	1.
05/06/98	1	1	i	1	1
11/10/98	ı	3	1	1	1
66/90/50	i	ĵ	j	1	1
11/03/99	1		ı	ı	1
05/10/00	1	J	t	f	ſ
11/07/00	i	1	1	ī	1
05/09/01	1	1	1	1	1
11/14/01	i	ī	1	L	1
05/14/02	J	1	t	1	1
11/06/02	Í	1	1	1	1
05/21/03	1	1	1	1	ı
11/11/03	Î	ĺ	1	ŧ	1
06/01/04	I	ı	i	1	1
11/08/04	Ţ	1	1	1	1
05/02/05	n	i	1	1	1
11/07/05	Ţ	ī	1	i	î
90/08/90	ţ	Í	1	i.	1
08/14/06	<5	\$	<5	6.00	215
11/07/06	5.00	<5	<5	3.00	209
02/14/07	13.0	5.00	0 <1	۲	175
05/02/07	<5	\$	3.00	7	190
08/27/07	<5	<5	<u>۷</u>	00.9	203
11/07/07	<5	<5	V	7	010

Angelina County Waste Management Center, Permit No. MSW 2105A, Angelina County, TX - Analytical Data

								MW-12A	۷_							
Accident (Lg/L) Accylentatic (Lg/L) Berzene (Lg/L) meltane (Lg/L) meltane (Lg/L) meltane (Lg/L) meltane (Lg/L) meltane (Lg/L) from the Lg/L (Lg/L) from the Lg/L) (Lg/L) (Bornechoup Brenchiston Brenchiston Brenchiston (upt.) Cartrus (stadio (upt.)) methane (upt.) (upt.) (upt.)	Biomochivin Biomoclichion Branciom (ug/L) Carbon disulfide nethane (ug/L) methane (ug/L) (ug/L)	Bromodichiono Bromolom (ug/L) Carbon disulfide (ug/L)	Bromoform (vg/L) Carbon disulfide (vg/L)	Carbon disulfide (ug/L)		4	Carbon telrschlodde (ug/L)	Chloroberzene (ug/L)	Chloroethane (Ug/L)	Chixatam (ug/L)	Dibramochlora methane (ug/L)	1,2-Dibromo-3- chloropropane (ug/L)	1,2-Dibromoethane (ug/L)	o-Dichlorobenzene (ug/L)	p-Dichlorobenzene (ug/L)
<20 <10 <5.0 <5.0 <5.0 <5.0 <5.0	<5.0 <5.0 <5.0 <5.0	<5.0 <5.0 <5.0 <5.0	<5.0 <5.0 <5.0	<5.0 <5.0	<5.0			<5.0	<5.0	<20	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
<20 <10 <5.0 <5.0 <5.0 <5.0 <5.0	<5.0 <5.0 <5.0 <5.0	<5.0 <5.0 <5.0	<5.0 <5.0	<5.0 <5.0	<5.0		-	<5.0	<5.0	<20	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
<20 <10 <5.0 <5.0 <5.0 <5.0 <5.0	<5.0 <5.0 <5.0	<5.0 <5.0 <5.0	<5.0 <5.0	<5.0		<5.0		<5.0	<5.0	<20	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
<20 <10 <5.0 <5.0 <5.0 <5.0 <5.0	<5.0 <5.0 <5.0 <5.0	<5.0 <5.0 <5.0	<5.0 <5.0	<5.0		<5.0		<5.0	<5.0	<20	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
<20 <10 <5.0 <5.0 <5.0 <5.0 <5.0	<5.0 <5.0 <5.0 <5.0	<5.0 <5.0 <5.0	<5.0 <5.0	<5.0		<5.0		<5.0	<5.0	<20	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
<20 <10 <5.0 <5.0 <5.0 <5.0 <5.0	<5.0 <5.0 <5.0 <5.0	<5.0 <5.0 <5.0	<5.0 <5.0	<5.0		<5.0		<5.0	<5.0	<20	<5,0	<5.0	<5.0	<5.0	<5.0	<5.0
<20 <10 <5.0 <5.0 <5.0 <5.0 <5.0	<5.0 <5.0 <5.0 <5.0	<5.0 <5.0 <5.0	<5.0 <5.0	<5.0	N	<5.0		<5.0	<5.0	<20	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
<20 <10 <5.0 <5.0 <5.0 <5.0 <5.0	<5.0 <5.0 <5.0 <5.0	<5.0 <5.0 <5.0	<5.0 <5.0	<5.0		<5.0		<5.0	<5.0	<20	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
<20 <10 <5.0 <5.0 <5.0 <5.0 <5.0	<5.0 <5.0 <5.0 <5.0	<5.0 <5.0 <5.0	<5.0 <5.0	<5.0		<5.0		0.5>	<5.0	<20	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
<20 <10 <5.0 <5.0 <5.0 <5.0 <5.0	<5.0 <5.0 <5.0 <5.0	<5.0 <5.0 <5.0	<5.0 <5.0	<5.0		<5.0		<5.0	<5.0	<20	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
<20 <10 <5.0 <5.0 <5.0 <5.0 <5.0	<5.0 <5.0 <5.0 <5.0	<5.0 <5.0 <5.0	<5.0 <5.0	<5.0		<5.0		<5,0	<5.0	<20	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
<20 <10 <5.0 <5.0 <5.0 <5.0 <5.0	<5.0 <5.0 <5.0 <5.0 <5.0	<5.0 <5.0 <5.0 <5.0	<5.0 <5.0 <5.0	<5.0 <5.0	<5.0		-	<5.0	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
<20 <10 <5.0 <5.0 <5.0 <5.0 · <5.0	<5.0 <5.0 <5.0 <5.0 <5.0	<5.0 <5.0 <5.0 - <5.0	<5.0 <5.0 - <5.0	<5.0 - <5.0	<5.0		-	<5.0	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
<20 <10 <5.0 <5.0 <5.0 <5.0 <5.0	<5.0 <5.0 <5.0 <5.0	<5.0 <5.0 <5.0	<5.0 <5.0	<5.0		<5.0		<5.0	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
<20 <10 <5.0 <5.0 <5.0 <5.0 <5.0	<5.0 <5.0 <5.0 <5.0	<5.0 <5.0 <5.0	<5.0 <5.0	<5.0		<5.0		<5.0	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
<20 <10 <5.0 <5.0 <5.0 <5.0 <5.0	<5.0 <5.0 <5.0 <5.0	<5.0 <5.0 <5.0	<5.0 <5.0	<5.0		<5.0		<5.0	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
<20 <10 <5.0 <5.0 <5.0 <5.0 <5.0	<5.0 <5.0 <5.0 <5.0	<5.0 <5.0 <5.0	<5.0 <5.0	<5.0		<5.0		<5.0	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
<20 <10 <5.0 <5.0 <5.0 <5.0 <5.0	<5.0 <5.0 <5.0 <5.0	<5.0 <5.0 <5.0	<5.0 <5.0	<5.0		<5.0		<5.0	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
<20 <10 <5.0 <5.0 <5.0 <5.0 <5.0	<5.0 <5.0 <5.0 <5.0	<5.0 <5.0 <5.0	<5.0 <5.0	<5.0		<5.0		<5.0	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
<20 <10 <5.0 <5.0 <5.0 <5.0 <5.0	<5.0 <5.0 <5.0 <5.0	<5.0 <5.0 <5.0	<5.0 <5.0	<5.0		<5.0		<5,0	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
<20 <10 <5.0 <5.0 <5.0 <5.0	<5.0 <5.0 <5.0	<5.0 <5.0 <5.0	<5.0 <5.0	<5.0	7	<5.0		<5.0	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
<20 <10 <5.0 <5.0 <5.0 <5.0 <5.0	<5.0 <5.0 <5.0 <5.0	<5.0 <5.0 <5.0	<5.0 <5.0	<5.0		<5.0	_	<5.0	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
<20 <10 <5.0 <5.0 <5.0 <5.0	<5.0 <5.0 <5.0 <5.0	<5.0 <5.0 <5.0	<5.0 <5.0	<5.0		<5.0		<5.0	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
<20 <10 <5.0 <5.0 <5.0 <5.0 <5.0	<5.0 <5.0 <5.0 <5.0	<5.0 <5.0 <5.0	<5.0 <5.0	<5.0		<5.0		<5.0	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
<20 <10 <5.0 <5.0 <5.0 <5.0 <5.0	<5.0 <5.0 <5.0 <5.0	<5.0 <5.0 <5.0	<5.0 <5.0	<5.0		<5.0		<5.0	<5.0	<10.	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
≪ <10 < ≪ <2 <	\$ \$	\$ \$	\$	\$		\$		\$	<5	<10	\$	\$	<5	<5	<5	<5
\$ <10 <5 <5 <5 <5	\$ \$	\$	\$	\$		\$		\$	\$	<10	<5	\$	\$	\$	\$	<5
<5.0 <10 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0	<5.0 <5.0 <5.0	<5.0 <5.0 <5.0	<5.0 <5.0	<5.0		<5.0		<5.0	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0

Angelina County Waste Management Center, Permit No. MSW 2105A, Angelina County, TX - Analytical Data

	Mathyl ethyl kelone (ug/L)	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20
	Methytene chlorido (ug/L)	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5	<5	<5.0
	Methylene bromide (ug/L)	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5	\$	<5.0
	Methyl chloride (ug/L)	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
	Methyl bromide (up/L)	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5	<5	<5.0
	2-Hezanone (ug/L)	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10
	Elhylbenzene (ug/L) 2-Hezanone (ug/L)	<5,0	<5.0	<5,0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5	<5	<5.0
	trans-1,3-Dichloro propene (ug/L)	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5	<5	<5.0
MW-12A	cis-1,3-Dichloro propene (ug/L)	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	-5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0		<5	<5.0
٤	1,2-Dichloropropane (ug/L)	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0		<5.0	<5.0	\$	\$	<5.0
	trans-1,2-Dichloro ethylene (ug/L)	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0.	<5.0	<5.0	<5.0			<5,0		<5.0		<5.0	<5.0	<5	45	0
	cis-1,2-Dichloro ethylene (ug/L)	<5.0	<5.0	> 0.6>	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0		<5.0	<5.0	<5.0	> 0.5>	28.8 <5.0	<5.0	<5.0	<5.0	<5.0		<5.0	<5.0	55	<5	<5.0
	1,1-Dichloroethylene (ug/L)	<5.0	<5.0	<5.0					<5.0	<5.0	<5.0		<5.0		<5.0	<5.0					<5.0	<5.0			<5.0		<5	<55	<50
	1,2-Dichloroethane (ug/L)	<5.0	<5.0	<5.0					<5.0	<5.0	<5.0	<5.0	<5.0		<5.0	<5.0	<5.0				<5.0						<5	45	<50
	1,1-Dichloroethane (ug/L)	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0			<5.0	<5	\$	0
	Lans-1,4-Dichloro-2- butene (ug/L)	<5.0								<5.0			<5.0			<5.0													
	Date	9> 96/20/20	-			02/06/97 <	+			> 86/90/50		> 66/90/50	11/03/99 <5	05/10/00 <5.0	11/07/00 <				_		11/11/03 <		11/08/04	05/02/05 <			11/07/06 <5	+	-

Angelina County Waste Management Center, Permit No. MSW 2105A, Angelina County, TX - Analytical Data

1							MW-12A							
Methyl locide (ug/L) pentanone (ug/L)	74.2. (UQ/L)	Styrene (ug/L)	1,1,1,2. Tetrachloroethane (ug/L)	1,1,2,2- Tetrachloroethane (ug/L)	Tetrachlorcetty/lene (ug/L)	Toluene (ug/L.)	1,1,1-Trichloroethane (ug/L)	1,1,2-Trichloroethane (ug/L)	Trichloroelhylene (ug/L)	Trichlorofluoromethane (ug/L)	1,2,3-Trichloropropend (ug/L)	Vinyl acetate (ug/L)	Vinyl acetale (1991) Vinyl chloride (1991) Todal Xylenna (1991)	Total Xylenes (ug/L)
<10		<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10
<10		<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0		<10
<10		<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0		<10
<10		<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10
حر0		<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0		<10
<10		<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10
<10		<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0		<10
<10		<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0		<10
<10		<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0		<10
<10		<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0		<10
<10		<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10
40		<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0		<10
c10		<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<2.0	<10
<10		<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<2.0	<10
c10		<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<2.0	<10
<10		<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<2.0	<10
<10		<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<2.0	<10
ot>		<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0		<10
40		<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<2.0	<10
×10		<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	€.0	<2.0	<10
<10		<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<2.0	<10
410		<5.0	<5.0	<5.0	<5,0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	€.0	42.0	<10
<10		<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5,0	<5.0	<5,0	<2.0	<10
۲۹0 د۱0		<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0		<10
<10 <10		<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<2.0	<10
<10	1	\$	\$	\$	<5	<5	<5	<5	\$	\$	45	45	2	<10
<10		\$	\$5	<5	<5	<5	<5	<5	\$	8	\$	<5	2	<10
<10		<50	<50	<5.0	<50	<5.0	<5.0	<5.0	V5.0	<5.0	/5.0	78.0	200	047

Angelina County Waste Management Center, Permit No. MSW 2105A, Angelina County, TX - Analytical Data

					The second second	The second secon										
Date	Specific Conductance (umho/cm)	Temperature (deg C)	Dissolved Amenic (ugil.)	Dissolved Barlum (ug/L)	om Dissolved Cadmium (ug/L)	Dissolved Chromium (ug/L)	Dissolved Copper (ug/L)	Dissolved Lead (ug/L)	Dissolved Nickel (ug/L)	Olssolved Selenium (ug/L)	Ammonia (mg/L)	Calcium (mg/L)	Chloride (mg/L)	fron (mg/L)	Magneslum (mg/L)	Polassium (mg/L)
02/07/96	3380	21.0	<5.0	<500	<1.0	<30	<20	<5.0	<20	<5.0	0.74	213	760	<0.05	52.0	13.2
96/60/50	3270	21.0	<5.0	<500	<1.0	<30	<20	<5.0	<20	<5.0	0.76	225	877	2.38	56.6	15.4
08/14/96	3390	22.0	<5.0	<500	<1.0	<30	<20	<5.0	<20	<5.0	0.72	216	850	1.67	6'09	18.9
11/06/96	3170	21.0	<5.0	<500	<1.0	<30	<20	<5.0	<20	0'9>	0.68	210	888	1,60	56,4	12.1
02/06/97	2920	20.0	5.60	0 <500	<1.0	<30	<20	<5.0	<20	<5.0	0,82	240	770	1.53	72.5	13.2
76/70/50	2790	21.0	5.50	0 <500	14.8	<30	<20	<5.0	<20	<5.0	0.75	230	850	1.99	57.5	17.5
08/06/97	2930	22.0	<5.0	<500	<1.0	<30	<20	<5.0	<20	<5.0	0.94	238	844	0.57	40.8	8.30
11/12/97	2240	19.5	5.95	2 <500	<1.0	<30	<20	<5.0	<20	-<5.0	0.93	254	849	1.74	67.2	15.6
05/06/98	3110	21.0		5.50 <500	<1.0	<30	<20	<5.0	<20	<5.0	0.99	261	853	0.95	54.8	15.5
11/10/98	3410	20.0	<5.0	<500	<1.0	<30	<20	<5.0	<20	<5.0	0.85	238	863	0.53	63.1	18.3
05/06/99	3200	21.0	<5.0	<500	<1.0	<30	<20	<5.0	<20	<5.0	<0.10	229	898	0.54	67.1	15.3
11/03/99	3170	21.0	<5.0	<500	<1,0	<30 ·	<20	<5.0	<20	<5.0	0.49	235	923	0.47	64.6	18.1
05/10/00	3240	23.0	<5.0	S	512 <1.0	<30	<20	<5.0	<20	<5.0	0.48	240	893	0.80	603	16.9
11/07/00	3290	23.0	<5.0	<500	<1.0	<30	<20	<5.0	<20	<5.0	0.41	228	845	1.49	69.3	15.7
05/09/01	3360	21.8	21.8 <5.0	<500	<1.0	<30	<20	<5.0	<20	<5.0	0.26	230	871	0.17	61.8	15.1
11/14/01	3680	20.6	20.6 <5.0	<500	<1.0	<30	<20	<5.0	<20	<5.0	0.18	252	887	0.13	77.5	16.6
05/14/02	4000	20.7	<5.0	<500	<1.0	<30	<20	<5.0	<20	<5.0	0.12	228	815	0.10	71.5	18.4
11/06/02	3430	19.2	<5.0	<500	<1.0	<30	<20	<5.0	<20	<5.0	0.30	248	896	0.27	6.69	18.0
05/21/03	3430	21.2	<5.0	<500	<1.0	<30	<20	<5.0	<20	<5.0	0.62	256	832	0.86	73.4	15.4
11/11/03	3467	20.7	5.69	9 <500	<1.0	30	<20	<5.0	<20	<5.0	0.25	233	827	1.87	62.7	19.7
06/02/04	2824	21.9		5,69 <500	4.0	<30	<20	<5.0	<20	<5.0	0.27	148	551	89.8	41.6	8.40
11/09/04	3346	23.3	<5.00	<500	<1.0	<30	<20	<5.0	<20	<5.0	0.13	204	177	5.75	0.09	13.6
05/03/05	3832	24.7	<5.0	<500	<1.0	<30	<20	<5.0	<20.0	<5.0	60.0	253	905	4.82	71.8	16.4
11/08/05	3951	26,7	<5.00	<500	<1.00	<30	<20	<5.00	<20	<5.00	0.23	249	905	3.76	7.07	16.7
05/31/06	3960	27.0	<5.00	<500	<1,00	<30	<20	<5.00	<20.0	<5.00	0.31	253	904	3.06	83.0	15.1
08/15/06	i	î	1	1	_	1	ī	1	ı	1	1			1	ĭ	ī
11/08/06	3543	24.3	\$	<500	<1	<30	<20	<5	<5	<5	0.30	258	352	3.65	71.0	18.2
02/14/07	3570	12.6	12.6 <5.00	ř	89 <1	۲۰	<5	<5	<5	<5	0.39	265	1010	5.45	76.6	15.9
05/03/07	3635	22.8	<5.00	7	93 <1	· ·	<5	<1.00	17.0	<5	0.35	270	936	6.77	74.8	21.1
08/28/07	4236	28.5	6.40		105 <1	<1	<5	<1.00	<5	₹2	0.36	280	892	6.62	73.0	17.4
11/08/07	4277	21.3	8.50		120 <1	>	<5	7	09'9	<5	0,56	260	980	7.60	72.0	17.0

Angelina County Waste Management Center, Permit No. MSW 2105A, Angelina County, TX - Analytical Data

Sodium (htgl.) Sublisite (mg/L) TOS (mg/L) TOS (mg/L) TOS (mg/L) PH (edd units) Antimony (ug/L) Anceric (ug/L) Bearlum (ug/L) Bearlum (ug/L) 494 144 1870 442 6.35 - - - - 508 151 2060 412 6.06 - - - - -	TDS (mg/L) Tobal Michaelmity us. PH (sold unitia) Antimony (ug/L) Ansente (ug/L) Bandum (ug/L)	70a 442 6.35 — — — — — — — — — — — — — — — — — — —	pH (sid units) Antennoy (upi1) Annenic (upi1) Bantum (upi1) 6.35	Antimory (ug/1) Arrenie (ug/1) Bantum (ug/1)	Antimory (logit) Barlum (logit)	Arsenic (ug/L) Barlum (ug/L)	Bartum (ug/L)	Beryllium (us	3	Cadmium (ug/L)	Chromium (ug/L)	Cobatt (ug/L)	Copper (ug/L)	Lead (ugil.)	Nickel (ug/L)
	443	178	2150	424	6.23	ı	1	.1	1	1	î	1	ı	1	1
4	476	146	2146	438	6.67	1	1	ī	1	1	1	1	4	1	1
	443	198	2190	426	6.64	1	ì	Ī	1	į	1	1	1	ĭ	i
	441	160	2190	430	6.71	1	1	ī	i	1	L	ŀ	1	Ĺ	4
	394	138	2170	454	6.42	1	1	1	1	1	1	i	1	1.	
	475	175	2150	448	6.40	-	ı	I	1	1	Ť	ī	1	1	1
	382	201	2190	450	6.33	1	L	1	t	t	i	1	Ĭ	1	1
	481	208	2560	452	6.44	ı	ŧ	i	1	1	ı	ì	1	1	•
	432	196	2120	450		1	1	1	Ĩ	ī	1	1	1	I	ı
	476	183	2190	404	89'9	1	1	1	ī	1	1	1	1	1	
1 3	468	195	2500	450	6.58	-	ı	1	1	1	1	1	1	1	1
	471	187	2260	436	6.73	-	1	1	1	t	1	1	1	Ť	ı
	379	157	2340	436	6.57	I	f	1	1	ſ	1	ı	1	1	ı
	382	208	2340	460	69'9	1		1	1	1	1	1	ī	Ĩ.	1
	434	253	2210	440	6.57	-	t	ı	1	1	1	1	1	1	1
	521	204	5440	454	6.30	-	I	-	1	i	4	1	1	ı	1
3111	470	281	2490	630	6.71	-	J	1	1	1	1	i.	i	4	
	453	177	1990	392	6.46	-	1	-	1.	1	1	1	į	i	-1
	355	105	1480	210	6.67	Î	1	Ī	1	1	1	1	1	j	
	437	169	2000	374	6.67	ŀ	1	-	Ī	1	ı	í	t	î	1
	484	189	2260	404	68.9	i	Ť	Ĩ	1	1	1	t	î	î	1
	467	202	2200	456	6.72	Ĩ	t	1	1	1	1	1	ī	Ţ	1
	476	199	2310	466	6.86	E	1	13	. 1	t	í	1	ï	ı	ī
	ŧ		1		ı	<5	<5.00	87.0	<1	V	V	٧	11.0	5	\$
1	548	219	2330	466	6.78	5>	<5.00	91,0	۲۷	V	1.00	⊽	\$	4	₩.
1	205	215	2320	477	7.61 <5	\$	<5.00	91.0	₹	V	٧	٧	\$	\$	\$
	468	227	2940	483	7.16	\$	<5.00	95.0	۲	₹	٧	٧	4	<1.00	2
	527	204	2440	475	60.9	<5	10.0	105	~	!	√.	₹	<5	<1.00	\$
	480	200	2400	12.0		\$	9.00	120 <1	7	₹	1.20	1.70		V	7.90

	MM	MW-13B		
Selenium (ug/L)	Silver (ug/L)	Thallium (ug/L)	Vanadium (ug/L)	Zino (ug/L)
,		i i	1	Ĭ
1	ı	Ĭ	ľ	1
t.	1	1		1.
1	i	1	1	ī
1	Ĭ	1	Ť	1
4	1	1	-	ı
1	i	ī	1	Ť
1	1	ī	ř	Ī
3	1	1	1	Í
d	1	4	ı,	1
1	1	ľ	ľ	ì
1.	1	Ī	1	1
1	1	-	L	i
1	I	1	1	Ī
1	t	-	Ţ	í
4	ī	1	1	i
1	Í	ı	1	ì
1	1	1	1	ī
-10	1	1	J	Î
1	1	Ĩ	i i	1
1	1	ī	1	ì
1	1	Í	1	ı
1	1	1	ı	ī
1	1	í	1	ı,
i	1	1	1	ī
<5	174	<5	2.00	54.0
₹	<5	<5	1,00	<5
\$	2,00	7	<1	36.0
<5	<5	3.00	۲۷	
<5	<5	<1	2.00	<5
<5	<5	₹	>	8.50

								MW-13B	m							
Date	Abetone (Ug/L)	Acrytonitrile (ug/L)	Benzene (ug/L)	Bromochloro methane (ug/L)	Bromodichioro methane (ug/L)	Bromoform (Ug/L)	Carbon disultide (ug/L)	Cutton (elrachloride (ug/L)	Chlorobenzene (ug/L.)	Chloroethane (ug/L)	Chloroform (ug/L.)	Dibromochloro methane (ug/L)	1,2-Dibramo.3- choropropane (ug/L)	1,2-Dibramoethane (vg/L)	o-Dichlerobenzene (ug/L)	p-Dichlorobenzene (ug/L)
02/07/96	<20	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<20	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
05/09/96	<20	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<20	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
08/14/96	<20	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<20	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
11/06/96	<20	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	20	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
02/06/97	<20	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<20	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
76170/50	<20	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<20	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
08/06/97	<20	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<20	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
11/12/97	<20	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<20	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
05/06/98	<20	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<20	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
11/10/98	<20	<10	<5,0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<20	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
66/90/50	<20	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<20	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
\neg	<20	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
05/10/00	<20	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<5,0	<5.0	<5.0	<5.0	<5.0
- 1	<20	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
	<20	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
11/14/01	<20	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
05/14/02	<20	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
11/06/02	<20	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
\neg	<20	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
	<20	410	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
\neg	<20	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
	<20	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<5,0	<5.0	<5.0	<5.0	<5.0
92/03/02	<20	<10	<5.0	<5.0	<5.0		<5.0	<5.0	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
11/08/05	<20	410	<5.0	<5.0	<5.0	H	<5.0	<5.0	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
05/31/06	<20	<10	<5.0	<5.0	<5.0		<5.0	<5.0	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
-	<20	<10	<5.0	<5.0	<5.0		<5.0	<5.0	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
100	<5	<10	\$	\$	€	<5	<5	<5	<5	<10	<5	< 5	5	\$	\$	<5
	<20	<10	<5	\$	< 5	<5	<5	<5	<5	<10	\$>	<5	<5	<5	<5	< 5
05/02/07	<5	<10	<5	\$	<5	<5	<5	<5	<5	<10	\$	<5	\$	\$	\$	<5
08/28/07	<20	<10	<5	<5	<5	<5	<5	<5	\$	<10	<5	<5	Ś	<5	<5	<5
11/08/07	<5.0	⊶	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<50	<5.0	<5.0	<5.0	<5.0	027

Angelina County Waste Management Center, Permit No. MSW 2105A, Angelina County, TX - Analytical Data

Date	trans-1,40ichloro-2- bulene (ug/L)	1,1-Dichloroethane (ug/L)	1,2-Dichlorsethane (ug/L)	1,1-Dichloroethylens (ug/L)	ds-1,2-Dichloro ethylene (ug/L)	trans-1,2-Dichloro elltyfene (up/L)	1,2-Dichloropropane (ug/L)	cis-1,3-Dichloro propene (ug/L)	trans-1,3-Dichloro propene (ug/L)	Ethylbenzene (ug/L)	Ethylberzene (ug/L) 2-Hezanone (ug/L)	Methyl bromide (ug/L)	Methyl chloride (ug/L)	Methylene bromide (ug/L)	Meltylene chloride (ug/L)	Methyl ethyl ketone (ug/L)
02/07/96 <	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<20	<50	<5.0	650	002
05/09/96 <5.0	5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	200	<50	<50	Z. Z	007
08/14/96 <5.0	5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	000>	<50	75.0	0.00	200
11/06/96	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	230	. S. C. F. C.	0.0	07	000
> 76/90/20	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	-5.0	107	007	9	000	0.00	250
3> 76/70/50	<5.0	<5.0	-5.0	750	75.0	200	200	0.00	0.0	200	012	075	COC	<5.0	<5.0	<20
-	0.00	0.7	7.0	0.0	0,05	C5.U	C5.0	<5.0	<5.0	<5.0	<10	<20	<50	<5.0	<5.0	<20
1	0.0	C3.U	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<20	<50	<5.0	<5.0	<20
-	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<20 .	<50	<5.0	<5.0	<20
05/06/98	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<20	<50	<5.0	<50	000
11/10/98 <	<5.0	<5.0	<5.0	<5.0	12.8 <5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	20	<50	<5.0	<5.0	200
> 66/90/50	<5.0	<5.0	<5.0	<5.0	18.6	<5.0	€0.0	<5.0	<5.0	<5.0	<10	000	<50 <50	<5.0	<5.0	007
11/03/99 <5.0	5.0	<5.0	<5.0	<5.0	24.7	<5.0	<5.0	<5.0	<5.0	<50	<10	.50 .50	240	75.0	200	00,
05/10/00 <5.0	5.0	<5.0	<5.0	0'9>	6.3	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	017	250	75.0	730
11/07/00 <5.0	5.0	<5.0	<5.0	<5.0	16.4	<5.0-	<5.0	<5.0	<5.0	<5.0	<10	<50	<10	<50	25.0	027
05/09/01 <5.0	0.0	<5.0	<5.0	<5.0	16.7	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	240	250	2,50	007
	5.0	<5.0	<5.0	<5.0	17.8 <5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<10	<50	0.50	027
	5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	~10 ~10	<50	<5.0	200
11/06/02 <5.0	5.0	<5.0	<5.0	<5.0	28.8 <5.0	<5.0	<5.0	<5.0	<5.0	<5.0	×10	<50	<10	650	V.F.0	027
_	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	410	<50	<10	<5.0	65.0	027
11/11/03 <5.0	0.0	<5.0	<5.0	<5.0	58.4 <5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<50 <50	<10	<5.0	650	007
06/02/04 <5.0	0.9	<5.0	<5.0	<5.0	146 <5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<10	<50	<5.0	200
11/09/04 <5.0	0.0		<5.0	<5.0	47.3 <5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<10	<50	<50	000
05/03/05 <5.0	0.0			<5.0	13,1 <5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<10	<5.0	<5.0	00
11/08/05 <5.0				<5.0	5.48 <5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<10	<5.0	<5.0	200
05/31/06 <5.0				<5.0	9.45	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<10	<5.0	<5.0	<20
		0	0	<5.0	34.5	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<10		<5.0	20
				<5	31.4	<5	<5	\$>	<5	\$	<10	\$	<10			<20
\rightarrow				₹2	<5	<5	<5	<5	\$	8	<10	\$	<10			<20
_				<5	<5	5	<5	<5	<5	<5	<10	<5	<10			<20
08/28/07 <5				\$	\$	₹2	<5	<5	<5	\$	<10	<5	<10	\$5	5	<20
11/08/07 <5.0		<5.0	<5.0	<55.0 CF.0	4	0 45				1						

Angelina Counly Waste Management Center, Permit No. MSW 2105A, Angelina County, TX - Analytical Data

										-					
Date	Methyl lodide (ug/L)	4-Metryl-2- pentanons (ug/L)	Styrene (ug/L)	1,1,1,2. Tetrachloroethane (ug/L)	1,1,2.2- Telrachloroethane (ug/L)	Tetrachloroethylene (ug/L)	Toluene (ug/L)	1,1,1-Trichloroethane (ug/L)	1,1,2-Trichloroethane (ug/L)	Trichloroettylene (up/L)	Inchlorofluoromelhane (ug/L)	1,2,3-Trichloropropane (ug/L)	Vinyl acetate (ug/L)	Vinyl accitate (UGL) Vinyl chloride (UGL) Total Xylenes (UGL)	Total Xylenes (ug/L)
96/Z0/Z0	<5.0	<10	<5.0	<5.0		<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10
	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10
-	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10
100	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10
02/06/97 <	<5.0	<10	<5.0	<5.0	<5.0	€.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5,0	<5.0	<10
05/07/97 <6	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10
08/06/97 <5	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10
_	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10
-	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5,0	<5.0	<5,0	<10
_		<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10
05/06/99 <5	7	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	410
11/03/99 <5		<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5,0	<5.0	<5.0	<5.0	<5.0	<2.0	<10
05/10/00 <5		<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<2.0	<10
		<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<2.0	<10
		<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<2.0	<10
		<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<2.0	<10
-		<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<2.0	<10
-		<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<2.0	<10
		<10	<5.0	<5.0		<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<2.0	<10
11/11/03 <5.0		<10	<5.0	<5.0	<5.0	7.13	7.13 <5.0	<5.0	<5.0	12.2	<5.0	<5.0	<5.0	<2.0	<10
06/02/04 <5.0		<10	<5.0	<5.0	<5.0	9.09	9.09 <5.0	<5.0	<5.0	15.4	<5.0	<5.0	65.0	<2.0	<10
11/09/04 <5.0		<10	<5.0	<5.0	<5.0	5.72	<5.0	<5.0	<5.0	6.62	<5.0	<5.0	<5.0	<2.0	<10
05/03/05 <5.0		<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<2.0	<10
11/08/05 <5.0		<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<2.0	<10
-		<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<2.0	<10
\rightarrow		<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0		<10
1		<10	<5	<5	· •	<5	<5	<5	<5	< 5	\$	₽			<10
5		<10	<5	<5	\$	<5	<5	<5	<5	\$>	\$	₽		42	<10
05/02/07 <5		<10	<5	₹2	<5	<5	<5	<5	<5	<5	\$	\$		2	<10
		1	<5			\$	<5	<5	<5	\$	\$	\$	\$	8	<10
11/08/07 <5.0	1	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	0	0	<10

Angelina County Waste Management Center, Permit No. MSW 2105A, Angelina County, TX - Analytical Data

								MIVV-14								
Date	Specific Conductance (umhofem)	Temperature (deg C)	Dissolved Areenic (ug/L)	Dissolved Barlum (ug/L)	Dissolved Cadmium (ug/L)	Dissolved Chromlum (ug/L)	Dissolved Copper (ug/L)	Dissolved Lead (ug/L)	Dissolved Nickel (ug/L)	Dissolved Selentum (ug/L)	Ammonia (mg/L)	Calcium (mg/L)	Chloride (mg/L)	Iron (mg/L)	Magnesturn (mg/L)	Polassium (mg/L)
02/07/96	5320	21.0	<5.0	<500	13.5	<30	<20	<5.0	79.1	<5.0	<0.10	4	448 2030	0 <0.05	107	14.8
96/60/90	4940	22.0	<5.0	<500	12.8	<30	<20	<5.0	70.0	<5.0	<0.10	3.	377 2190	0 <0.05	116	14.0
08/14/96	5410	22.0	<5.0	<500	14.6	35.0	<20	<5.0	80.0	<5.0	<0.10	E	362 1920	0.08	111	15.0
11/06/96	4820	21.0	<5.0	<500	19.7	<30	<20	<5.0	0.06	<5.0	<0.10	31	365 2190	0 <0.05	110	14.0
02/06/97	4360	20.0	<5.0	<500	17.5	<30	<20	<5.0	80.0	<5.0	<0.10	4	419 2050	0 <0.05	129	14.3
76/70/30	3740	20.5	<5.0	<500	15.1	<30	<20	<5.0	90.0	<5.0	<0.10	4	462 2100	0 <0.05	109	16.9
76/90/80	4700	22.0	<5.0	<500	17.8	<30	<20	<5.0	0.09	<5.0	<0,10	4	491 1980	0 <0.05	1.68	10.0
11/12/97	3350	19.0	<5.0	<500	21.1	<30	<20	<5.0	0.09	<5.0	<0.10	4	464 1950	0 <0.05	125	17.1
05/06/98	3440	22.0	<5.0	<500	19.6	<30	<20	<5.0	0.06	<5.0	0.11		404 1990	0 <0.05	98.9	18.8
11/10/98	5140	21.0	<5.0	<500	19.2	<30	<20	<5.0	75.0	<5.0	0.18		372 1980	20.05	108	18,1
05/06/99	4360	23.0	23.0 <5.0	<500	22.2	<30	<20	<5.0	64.9	<5.0	<0.10	31	388 1910	70.0	103	15.6
11/03/99	4730	22.0	22.0 <5.0	<500	26.3	<30	<20	<5.0	83.9	<5.0	<0.05	4	400 1500	0.05	100	18,1
05/10/00	4870	23,0	23,0 <5.0	929	21.9	<30	<20	<5.0	67.0	<5.0	<0.05	4	432 1880	0 <0.03	101	16.8
11/07/00	4840	23.0	23.0 <5.0	<500	27.4	<30	<20	<5.0	79.4	<5.0	<0.05	36	363 1890	0.06	112	15.5
05/09/01	5150	22.8	22.8 <5.0	<500	14.1	<30	<20	<5.0	30.4	<5.0	<0.05	36	388 1990	20.05	112	15.0
11/14/01	6340	19.9	19.9 <5.0	<500	24.7	<30	<20	<5.0	83.7	<5.0	<0.05	4(404 1920	0.08	157	17.2
05/14/02	6400	21.0	21.0 <5.0	<500	1.39	<30	<20	<5.0	75.2	<5.0	<0.05	3.	376 2040	0.25	137	18.8
11/06/02	5550	19,4	19.4 <5.0	<500	4.46	<30	<20	<5.0	78.5	<5.0	<0.05	4	408 2170	0,09	159	18.5
05/21/03	5490	20.8	<5.0	682	<1.00	<30	<20	<5.0	77.0	5.47	<0.05	4.	424 2170	0.06	167	16.3
11/11/03	6340	21.0	<5.0	704	33.4	<30	<20	<5.0	108		7.38 <0.05	4	413 2160	0.14	134	22.2
06/01/04	6659	22.9	<5.0	77.1	21.7	<30	<20	<5.0	83.2	8.84	<0.05	36	361 2140	0.05	120	19.7
11/08/04	6343	21.2	<5.00	<500	<1.0	<30	<20	<5.00	122	<5.00	<0.05	æ	317 1860	0.26	114	16.1
05/02/05	6585	22.7	<5.0	<500	10.6	<30	<20	<5.0	111	<5.0	<0.05	4	411 2050	0.17	140	16.8
11/07/05	2089	23,9	<5.00	<500	<1.00	<30	<20	<5.00	130	<5.00	0.08	100	430 2060	1.78	119	20.4
90/06/50	6962	22.3	<5.00	<500	11.7	<30	<20	<5.00	134	<5.00	<0.05	5.	537 2300	0 <0.05	162	18.9
08/14/06	2969	25.3	1	ī		1	1	1	1	1	Ĭ	1	ı	1	1	1
90/17/80	1	1	1	í	1	ı	1	1	1	1	1	1	ı	1	ī	t
11/07/06	5945	20.5	< 5	<500	26.0	<30	<20	<5	108	5.00	<0.05	4	402 2290	3 <0.05	128	18.9
12/07/06	5930	15.2	<5.00	124	38.0	5.00	<5	₹2	106	<5	<0.05	4	403 2150	0.02	110	19.5
02/14/07	6382	17.6	I	1	ī	Ī	1	1	1	ı	ā	1	.)	1	1	1
05/03/07	6541	22.8	<5.00	117	24.0	3.00	\$	1.87	146	\$	<0.05	4	442 2230	0.02	153	22.0
08/28/07	6203	24.0	1	1	1	t	1	Ĭ	í	1	î	j	1	1	1	1
11/08/07	7267	21.1 <5	< 5	180	26.0	2.40	<5	₹	100	5.40	<0.05	4	400 230	2300 <0.05	120	19.0

Angelina County Waste Management Center, Permit No. MSW 2105A, Angelina County, TX - Analytical Data

1	MW-14	Copper (up/L)	Nickel (ugit.)
Suifate (mg/L) TDS (mg/L) Total Alkalinity as CaCO3 (mg/L)	Antimony (upt.) Artentic (upt.) Bartum (upt.), Beryllium (upt.) Cadmium (upt.) Chemium (upt.) Cobalt (upt.)		1 1 1 1
63.0 3720	1		riji
78.4 3730	1		1 1
67.5 4450	1	1	į i
40.8 4090	1 1.	1	i
55.6 4200	1	1	j
71.8 4360	1	1	ī
107 4910	1	1	1
70.9 3830	1 1	ı	1
91.0 4900	1 1	1	1
80.2 3960	1 1	ī	1
73.4 5120	1 1	í	1
52.0 4780	1	1	ı
66.6 4340	1	ı	
60.6 4270	1 1		ľ
47.0 4810 22.0	1 1		1 1
79.4 4680 10.0	1		1 1 1
80.2 4650 82.0	1		1 1 1 1
78.7 4720 20.0	t t		1 1 1 1 1
62.5 6090 16.0	t i i i i i i i i i i i i i i i i i i i		1 1 1 1 1
79.8 4910 12.0	t i i		1 1 1 1 1 1
96.1 5060 14.0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 1 1 1 1 1 1 1
137 3940 16.0			1 1 1 1 1 1 1 1 1
140 4710 16.0			1 1 1 1 1 1 1 1 1 1
151 4960			1 1 1 1 1 1 1 1 1 1
165 4960			1 1 1 1 1 1 1 1 1 1 1 1
Í			1 1 1 1 1 1 1 1 1 1 1 1
ı		5.00	0 1 1 1 1 1 1 1 1 1 1 1 1 1
143 4320	1	5.00	1 1 1 1 1 1 1 1 1 1 1 1
180 5180		5.00	1 1 1 1 1 1 1 1 1 1 1 1
1		5,000	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
209 6380		5.00	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1		\$ \$ \$ \$ \$	742
0000		5,000	

			2000000000		-	1	
Date	Selentum (ug/L)	Silver (ug/L)	Thallium (ug/L)	Vanadium (ug/L)	Zinc (ug/L)	-	
02/07/96	į	1	1	1	T	1	
96/60/50	i	1	1	-	ı	-1	
08/14/96	Ĭ	1	1	ĭ	T	į.	
11/06/96	i	A	1	1	1	1	
02/06/97	í	1	4	t	1	1	
76/70/30	.1	1	1	Ì	1	1	
76/90/80	1	1	1	1	1	1	
11/12/97	i	1	ı	1	1	1	
05/06/98	ı	i	1	i	1	1	
11/10/98	1	1	1	i	1	1	
05/06/99	ı	ì	1	t	ţ	Î	
11/03/99	-1	1	ι	1	1	1	
05/10/00	1	1	1	ĭ	ı	Î	
11/07/00	1	Ī	4	i	10	(į)	
10/60/50	1	J	1	1	1	1	
11/14/01	1	1	1	1	t	1	
05/14/02	-	1	1	ı	1	1	
11/06/02	ŧ	I	1	1	1	ij.	
05/21/03	1	í	1	1	1	1	
11/11/03	ı	ì	1	ı	1	ì	
06/01/04	1	1	1	1	Ţ	ì	
11/08/04	t	î	-	ī	ol E	i	
05/02/05	1	ī	1	-	1	Ĭ	
11/07/05	1	ï	1	I	ı	ì	
90/06/50	1	Ī	1	1	1	Ĭ	
08/14/06	<5	8.00	<5	3.00		333 -	
08/17/06	<5	8.00	<5	3.00		333 -	
11/07/06	\$	\$	-5	1.00		286 -	
12/07/06	1	ĵ	Į	1	1		1.80
02/14/07	9.00	17.0	4	Þ	4	409	2.77
05/03/07	<5	<5	3.00	Þ	c	372	2.40
08/28/07	<5	<5	<1	2.00	8	362	1.94
11/08/07	6.30	\$	٧	V	2	250	2.30

Angelina County Waste Management Center, Permit No. MSW 2105A, Angelina County, TX - Analytical Data

1																
450 450 <th>J/gr</th> <th>Actylentitile (ug/L)</th> <th>Benzene (ug/L)</th> <th>Bramochloro melhane (ug/L)</th> <th>Bromodichloro methane (ug/L)</th> <th>Вготогот (ид.)</th> <th>Carpon disulfide (up/L)</th> <th>Carbon letrachloride (ug/L)</th> <th>Chlorobenzene (ug/L)</th> <th>Chloroethane (ug/L)</th> <th></th> <th>Dibromochlora methane (ug/L)</th> <th>1,2-Dibromo-3- chloropropane (ug/L)</th> <th>1,2-Dibromoethane (ug/L)</th> <th>o-Dichloroberzene (ug/L)</th> <th>p-Dichlorobenzene (ug/L)</th>	J/gr	Actylentitile (ug/L)	Benzene (ug/L)	Bramochloro melhane (ug/L)	Bromodichloro methane (ug/L)	Вготогот (ид.)	Carpon disulfide (up/L)	Carbon letrachloride (ug/L)	Chlorobenzene (ug/L)	Chloroethane (ug/L)		Dibromochlora methane (ug/L)	1,2-Dibromo-3- chloropropane (ug/L)	1,2-Dibromoethane (ug/L)	o-Dichloroberzene (ug/L)	p-Dichlorobenzene (ug/L)
650 650 <td></td> <td><10</td> <td><5.0</td> <td><5.0</td> <td><5.0</td> <td><5.0</td> <td>\$</td> <td><5</td> <td><5.0</td> <td><20</td> <td><5.0</td> <td><5.0</td> <td><5.0</td> <td><5.0</td> <td>087</td> <td>75.0</td>		<10	<5.0	<5.0	<5.0	<5.0	\$	<5	<5.0	<20	<5.0	<5.0	<5.0	<5.0	087	75.0
450 450 <td>1</td> <td><10</td> <td><5.0</td> <td><5.0</td> <td><5.0</td> <td><5.0</td> <td><5.0</td> <td><5.0</td> <td><5.0</td> <td><20</td> <td><5.0</td> <td><5.0</td> <td>\$50</td> <td><50</td> <td>55.0</td> <td>75.0</td>	1	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<20	<5.0	<5.0	\$50	<50	55.0	75.0
400 450 <td>1</td> <td><10</td> <td><5.0</td> <td><5.0</td> <td><5.0</td> <td><5.0</td> <td><5.0</td> <td><5.0</td> <td><5.0</td> <td><20</td> <td><5.0</td> <td><5.0</td> <td><50</td> <td><50</td> <td>650</td> <td>0.00</td>	1	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<20	<5.0	<5.0	<50	<50	650	0.00
450 450 <td></td> <td><10</td> <td><5.0</td> <td><5.0</td> <td><5.0</td> <td><5.0</td> <td><5.0</td> <td><5.0</td> <td><5.0</td> <td><20</td> <td><5.0</td> <td><5.0</td> <td><50</td> <td><50 50</td> <td><50</td> <td>0.00</td>		<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<20	<5.0	<5.0	<50	<50 50	<50	0.00
50 50<		<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<20	<5.0	<5.0	<50	<5.0	<5.0	25.0
650 650 <td></td> <td>410 دا0</td> <td><5.0</td> <td><5.0</td> <td><5.0</td> <td><5.0</td> <td><5.0</td> <td><5.0</td> <td><5.0</td> <td><20</td> <td><5.0</td> <td>550</td> <td><5.0</td> <td><5.0</td> <td>250</td> <td>000</td>		410 دا0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<20	<5.0	550	<5.0	<5.0	250	000
\$\langle \text{c} \		<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	⊘ 0	<5.0	<5.0	65.0	0.50	0.00	0.00
450 450 <td>П</td> <td><10</td> <td><5.0</td> <td><5.0</td> <td><5.0</td> <td><5.0</td> <td><5.0</td> <td><5.0</td> <td><5.0</td> <td><20</td> <td><5.0</td> <td><5.0</td> <td><5.0</td> <td>250</td> <td>2 4</td> <td>0.00</td>	П	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<20	<5.0	<5.0	<5.0	250	2 4	0.00
650 650 <td></td> <td><10</td> <td><5.0</td> <td><5.0</td> <td><5.0</td> <td></td> <td><5.0</td> <td><5.0</td> <td><5.0</td> <td>000</td> <td><5.0</td> <td>650</td> <td>2 4</td> <td>0.00</td> <td>0.00</td> <td>0.05</td>		<10	<5.0	<5.0	<5.0		<5.0	<5.0	<5.0	000	<5.0	650	2 4	0.00	0.00	0.05
610 620 <td></td> <td><10</td> <td><5.0</td> <td><5.0</td> <td><5.0</td> <td></td> <td><5.0</td> <td><5.0</td> <td><5.0</td> <td>000</td> <td><50</td> <td>55.0</td> <td>2.5</td> <td>760</td> <td>0.62</td> <td>0.05</td>		<10	<5.0	<5.0	<5.0		<5.0	<5.0	<5.0	000	<50	55.0	2.5	760	0.62	0.05
450 450 <td></td> <td><10</td> <td></td> <td><5.0</td> <td><5.0</td> <td>0</td> <td><5.0</td> <td><5.0</td> <td><50</td> <td>000</td> <td><5.0</td> <td>250</td> <td>0.57</td> <td>0.00</td> <td>20.0</td> <td>0.05</td>		<10		<5.0	<5.0	0	<5.0	<5.0	<50	000	<5.0	250	0.57	0.00	20.0	0.05
450 450 <td>7</td> <td>410</td> <td></td> <td><5.0</td> <td><5.0</td> <td>0</td> <td></td> <td></td> <td><50</td> <td><10</td> <td>75.0</td> <td>200</td> <td>0.00</td> <td>0.00</td> <td>20.0</td> <td>C5.U</td>	7	410		<5.0	<5.0	0			<50	<10	75.0	200	0.00	0.00	20.0	C5.U
\$10 \$20 <td></td> <td><10</td> <td></td> <td><5.0</td> <td><5.0</td> <td></td> <td></td> <td></td> <td><5.0</td> <td><10</td> <td>5.0</td> <td>V5.0</td> <td>25.0</td> <td>25.0</td> <td>45.0</td> <td>0.05</td>		<10		<5.0	<5.0				<5.0	<10	5.0	V5.0	25.0	25.0	45.0	0.05
50 50 50 50 60<		<10		<5.0	i				<5.0	<10	<50	550	\$50	0.50 0.50	25.0	<50
5.0 6.0 <td></td> <td><10</td> <td></td> <td><5.0</td> <td></td> <td></td> <td></td> <td></td> <td><5.0</td> <td><10</td> <td><5.0</td> <td><50</td> <td><5.0</td> <td><5.0</td> <td>0.50</td> <td>2,50</td>		<10		<5.0					<5.0	<10	<5.0	<50	<5.0	<5.0	0.50	2,50
5.0 6.0 <td>N</td> <td><10</td> <td>ľ</td> <td><5.0</td> <td></td> <td></td> <td></td> <td></td> <td><5.0</td> <td><10</td> <td><5.0</td> <td><5.0</td> <td><5.0</td> <td><50</td> <td>\$50 \$50</td> <td>25.0</td>	N	<10	ľ	<5.0					<5.0	<10	<5.0	<5.0	<5.0	<50	\$50 \$50	25.0
5,0 5,0 <td></td> <td><10</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td><5.0</td> <td><10</td> <td><5.0</td> <td><5.0</td> <td><5.0</td> <td><50</td> <td><5.0</td> <td>5.0</td>		<10							<5.0	<10	<5.0	<5.0	<5.0	<50	<5.0	5.0
450 450 <td></td> <td><10</td> <td></td> <td><5.0</td> <td></td> <td></td> <td></td> <td></td> <td><5.0</td> <td><10</td> <td><5.0</td> <td><5.0</td> <td><5.0</td> <td><50</td> <td><5.0</td> <td><5.0</td>		<10		<5.0					<5.0	<10	<5.0	<5.0	<5.0	<50	<5.0	<5.0
\$50 \$50 <td></td> <td><10</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td><5.0</td> <td>410</td> <td><5.0</td> <td><5.0</td> <td><5.0</td> <td><5.0</td> <td><5.0</td> <td><50</td>		<10							<5.0	410	<5.0	<5.0	<5.0	<5.0	<5.0	<50
450 450 <td></td> <td><10</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td><5.0</td> <td><10</td> <td><5.0</td> <td><5.0</td> <td><5.0</td> <td><5.0</td> <td><5.0</td> <td><50</td>		<10							<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<50
50 50 50 60<		410							<5.0	<10	<5.0	<5.0	<5.0	<5.0	<50	<5.0
\$60 \$60 <td></td> <td><10</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td><5.0</td> <td><10</td> <td><5.0</td> <td><5.0</td> <td><5.0</td> <td><5.0</td> <td>₹20</td> <td>\$50</td>		<10							<5.0	<10	<5.0	<5.0	<5.0	<5.0	₹20	\$50
\$50 \$50 \$50 \$50 \$50 \$60 <td></td> <td>410</td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td><5.0</td> <td><10</td> <td><5.0</td> <td><5.0</td> <td><5.0</td> <td><5.0</td> <td><5.0</td> <td><5.0</td>		410			1				<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Color Colo		<10							<5.0		<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
\$\langle 5.0 \$\la		1	1			1	1		.1	1	1	ī				
	Ī	<10							<5.0		<5.0	<5.0	<5.0	<5.0	ZE.0	780
6 6		ŧ		1	1	1	1	1					-	0.0	27	7
\$\left(5\) \left(5\) \left		<10										45	. v.	4	, 4	1 9
\$\left(5\) \cdot \		~10										CF.	5 5	7 4	7 4	9 4
\$5.0 \$5.0 \$5.0 \$5.0 \$5.0 \$5.0 \$5.0 \$5.0												45	7 4	2 4	7 4	50
		<10				-						7	7	9	00	9

Angelina County Waste Management Center, Permit No. MSW 2105A, Angelina County, TX - Analytical Data

	all and a second							-I-AAIA								
Date	Irans-1,4-Dichloro-2- butene (ug/L)	1,1-Dichloroelhane (ug/L)	1,2-Dichloroethane (ug/L)	1,1-Dichleroethylene (ug/L)	cis-1,2-Dichloro ethylene (ug/L)	trans-1,2-Dichloro ethylene (ug/L)	f,2-Dichloropropane (ug/L)	cis-1,3-Dichloro propene (ug/L)	trans-1,3-Dichloro propene (ug/L)	Elhylberzene (ug/L)	2-Hexanone (ug/L)	Methyl bromide (ug/L)	Methyl chloride (ug/L)	Methylene bromide (ug/L)	Methylene chloride (ug/L)	Methyl ethyl kelone (up/L)
02/07/96	3 <5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<20	<50	<5.0	<5.0	<20
05/03/96	3 <5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<20	<50	<5.0	<5.0	<20
08/14/96	3 <5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<20	<50	<5.0	<5.0	<20
11/06/96	5 <5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<20	<50	<5.0	<5.0	<20
02/06/97	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<20	<50	<5.0	<5.0	<20
05/07/97	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<20	<50	<5.0	<5.0	<20
76/90/80	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<20	<50	<5.0	<5.0	<20
11/12/97	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<20	<50	<5.0	<5.0	<20
05/06/98	1 <5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<20	<50	<5.0	<5.0	<20
11/10/98	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<20	<50	<5.0	<5.0	<20
05/06/99	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<20	<50	<5.0	<5.0	<20
11/03/99 <5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<10	<5.0	<5.0	<20
05/10/00 <5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<10	<5.0	<5.0	<20
11/07/00 <5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<10	<5.0	<5.0	<20
05/09/01 <5.0	-	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5,0	<5.0	<10	<5.0	<10	<5.0	<5.0	<20
11/14/01	_	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<10	<5.0	<5.0	<20
05/14/02	\rightarrow	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<10	<5.0	<5.0	<20
11/06/02	-	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<10	<5.0	.<5.0	<20
05/21/03	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<10	<5.0	<5.0	<20
11/11/03		<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<10	<5.0	<5.0	<20
06/01/04	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<10	<5.0	<5.0	<20
11/08/04 <5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<10	<5.0	<5.0	420
05/02/05 <5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	410	<5.0	<5.0	<20
11/07/05	<5.0	6.10	6.10 <5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<10	<5.0	<5.0	<20
01/03/06	1	\$	1	1	ı	ı	1	1	1	1	1	î	1	1	1	1
05/30/06	<5.0	6.78	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<10	<5.0	<5.0	<20
08/17/06	1	7.92	1	P	1		í	i	1	1	í		ı	1	ı	
11/07/06	-	5	\$	<5	<5	<5	<5	<5	<5	<5	<10	<5	<10	4	\$	<20
12/07/06	_	5	<5	<5	<5	₹2	<5	<5	<5	<5	<10	<5	<10	5	5	<20
05/02/07	\$	6.03		<5	<5	\$	<5	<5	<5	<5	<10	5>	<10	\$	<5	<20
11/08/07	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<10	<5.0	<5.0	<20

Angelina County Waste Management Center, Permit No. MSW 2105A, Angelina County, TX - Analytical Data

								MW-14							
Date	Methyl lodide (ug/L)	4-Methyl-2- pentanone (ug/L)	Styrene (Ug/L)	1,1,1,2. Tetrachlorochane (ug/L)	1,1,2,2- Tetrachloroethane (bg/L)	Tetrachloroethylene (ug/L)	Toluene (ug/L)	1,1,1-Trichloroethane (ug/L)	1,1,2-Trichloroethana (ug/L)	Trichloroethylene (ug/L)	Trichlorofluoromethane (ug/L)	1,2,3-Trichioropropane (ug/L)	Vinyl acetate (ug/L)	Vinyl acetate (ug/L) Vinyl chloride (ug/L) Total Xylenes (ug/L)	Total Xylenes (ug/L)
02/07/96	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10
05/09/96	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10
08/14/96	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10
11/06/96	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10
02/06/97	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10
05/07/97	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10
76/90/80	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10
11/12/97	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10
86/90/90	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10
11/10/98 <5.0	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10
66/90/90	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10
11/03/99	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<2.0	<10
05/10/00	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<2.0	<10
11/07/00	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5,0	<5.0	<5.0	<2.0	<10
05/09/01	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<2.0	<10
11/14/01	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<2.0	<10
05/14/02	<5.0	410	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<2.0	<10
11/06/02	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<2.0	<10
05/21/03	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<2.0	<10
11/11/03	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<2.0	<10
06/01/04	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5,0	<5.0	<5.0	<2.0	<10
11/08/04	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5,0	<5.0	<5.0	<5.0	<5.0	<5.0	<2.0	<10
05/02/05	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<2.0	<10
11/07/05	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<2.0	<10
01/03/06	4.	1	í	ı	ı	1	1	ι	ı	1		1	Ĺ	1	1
90/06/50	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<2.0	<10
08/17/06	1	1	1	1	et.	1	i	t	1	Ĺ	+	1	ſ		1
11/07/06	<5	<10	\$	\$	\$	<5	<5	<5	<5	<5	<5	<5	\$	2	<10
12/07/06	<5	<10	<5	₹	<5	<5	< 5	\$	<5	\$	\$	\$	\$	2	410
05/02/07	\$	<10	\$	45	<5	45	<5	<5	<5	<5	<5	<5	\$	7	410
11/08/07	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<2.0	<10

Angelina County Waste Management Center, Permit No. MSW 2105A, Angelina County, TX - Analytical Data

						-		-			-								
Date	Specific Conductance (umho/cm)	Temperature (deg C)	Dissolved Arsenic (ug/L)	Dissolved Barium (ug/L)		Dissolved Cadmium (ug/L)	Dissolved Chromium (ug/L)	Dissolved Copper (ug/L)	Dissolved Lead (ug/L)	Dissolved Nickel (ug/L)	kel Dissolved Selenium (ug/L)		Ammonia (mg/L)	Calcium (mg/L)	Chloride (mg/L)	.) Iron (mg/L)	Magnesium (mg/L)	_	Potassium (mg/L)
02/07/96	6390	21.0	<5.0	9	089	23.3	<30	<20	<5.0	E	30.4 <5.0	<0.10	10	57	573 24	2460 <0.05		125	15.3
96/60/90	6040	22.0	<5.0	<500		17.7	<30	<20	<5.0	3	30.0 <5.0	<0.10	10	55	590 23	2300 <0.05		147	18.6
08/14/96	6560	22.0	<5.0	9	570	16.7	50.0	<20	<5.0	40	40.0 <5.0	<0.10	10	55	537 2350	90.0	90	140	20.5
11/06/96	5760	21.0	<5.0	7	710	26,3	<30	<20	<5.0)5	50.0 <5.0	<0.10	10	55	532 2350	50 <0.05		125	14
02/06/97	5250	20.0	20.0 <5.0	<500		20.8	<30	<20	<5.0	36	30.0 <5.0	<0.10	10	55	552 2320	20 0.06	90	153	16.2
05/07/97	4430	21.5	21.5 <5.0	<500		14.8	<30	<20	<5.0	40	40.0 <5.0	<0.10	10	9	638 24	2410 <0.05		130	20
78/06/97	4870	23.0	<5.0	<500		24.4	<30	<20	<5.0	40	40.0 <5.0	<0.10	10	76	704 24:	2430 <0.05		118	12.4
11/12/97	3410	20.0	<5.0	<500		12.5	<30	<20	<5.0	20	20.0 <5.0	<0.10	10	63	633 24	2400 <0.05		150	19,2
05/06/98	3040	22.0	<5.0	<500		23.2	<30	<20	<5.0	57	57.0 <5.0		0:30	57	572 24	2400 <0.05		112	22.2
11/10/98	6330	21.0	21.0 <5.0	9	685	27.0	<30	<20	<5.0	26	26.0 <5.0		0.13	50	508 2350	50 <0.05		143	20.4
66/90/90	6220	23.0	23.0 <5.0	3	555	26.1	<30	<20	<5.0	26	26.8 <5.0	<0.10	10	55	596 2400	70.0 00	1	160	18
11/03/99	5570	21.0	21.0 <5.0	5	265	28.0	<30	<20	<5.0	34	34.6 <5.0	<0.05	35	57	572 2100	90'0 00	9	150	20.6
05/10/00	5840	22.0	<5.0	11	1100	24.8	<30	<20	<5.0	33	33.0 <5.0	<0.05	75	61	613 2330	30 0.06	9	139	19.8
11/07/00	2530	22.0	<5.0	<500	<1.0		<30	<20	<5.0	35	32.2 <5.0	<0.05	35	544	14 2650	50 0.27	7	130	17.7
05/09/01	5850	22.0	22.0 <5.0	9	632	17.0	<30	<20	<5.0	<20	<5.0	<0.05	75	51	518 2360	30 0.11	-	134	18
11/14/01	7210	20.0	20.0 <5.0	1090	90	26.8	<30	<20	<5.0	33	33.0 <5.0	<0.05	35	55	584 2520	20 0.12	2	186	18.8
05/14/02	7100	21.3	21.3 <5.0	<500		3.00	<30	<20	<5.0	33	33.7 <5.0	<0.05	35	48	480 2550	90.0	8	178	20.9
11/06/02	6100	19.6	19,6 <5.0	Ş	287	8.09	<30	<20	<5.0	24	24.6 <5.0	<0.05	75	51	512 2380	30 0.2		188	20.8
05/21/03	6100	21.4	<5.0	1430	30	2.20	<30	<20	<5.0	37	32.9	6.05 <0.05	35	35	584 2220	20 0.17		189	17.9
11/11/03	7001	21.8	<5.0	1550	20	39.4	<30	<20	<5.0	36	35.6	5.12 <0.05	35	52	529 2420	20 0.14	4	152	24
06/01/04	7117	22.6	<5.0	1980	80	17.4	<30	<20	<5.0	32	32.2	6.75 <0.05	35	497	37 2550	50 0.164		140	23
11/08/04	7111	23.1	23.1 <5.00	7	711	23.5	<30	<20	<5.00	41	41.3 <5.00	<0.05	35	48	493 2340	10 0.184		145	19.3
05/02/05	7198	22.8	22.8 <5.0	6	914	18.3	<30	<20	<5.0	27	27.1 <5.0	<0.05	35	56	585 2350	50 <0.05		167	21.3
11/07/05	7173	26.1	26.1 <5.00	<500		20.2	<30	<20	<5.00	41	41.0 <5.00	<0.05	75	42	545 2240	10 0,352	2	127	18.5
90/06/90	7214	27.6	<5.00	Ġ	651	12.4	<30	<20	<5.00	33	33.9 <5.00	<0.05	35	58	585 2410	10 0.495	5	167	22.9
08/14/06	ı	t	1	1	Ţ			T	î	1	1	1		T	1	1	1	ı	
11/07/06	6536	24.3	<5	1190	90	1.00	<30	<20	8	34	34.0 <5	<0.05	35	56	589 2570	1.69	6	156	22.1
02/14/07	6542	16.6	ı	i	Ì			1	ī	1	1	ī		1	t	ī	1	Ť	
05/02/07	6575	22.9	<5.00	7	715 <1		2.00	<5	1.66	42	42.0 <5		0.11	58	586 2390	3.52	2	165	26.6
08/27/07	7592	27.8	1	Ť	ī		i	1	1	1	1)	Ţ		1	ľ	t	1	1	
11/07/07	7306	19.2	\$.9	670	26.0	·	<5	~	34	34.0 <5	<0.05	55	46	460 2400	00 <0.05		130	00

Angelina County Waste Management Center, Permit No. MSW 2105A, Angelina County, TX - Analytical Data

								MW-15A								
	Nitrate (mg/L)	Sodium (mg/L)	Sulfate (mg/L)	TDS (mg/L)	Total Atteilnity as CaCO3 (mg/L)	(stron pss) Hd	Antimony (ug/L)	Arsenic (ug/L)	(1/6n) writeg	Beryilum (ug/L)	Cadmium (ug/L)	Chromium (ug/L)	Cobalt (ug/L)	Capper (ug/L)	Lead (vg/L)	Nickel (ug/L)
02/07/96	0.09	683	16.8	4290	16.0	5.02	1	1	1	ī	1.	i,	1	1	ı	1
96/60/90	0.16	738	28.0	4590	14.0	4.68	1	i	1	1	Ĭ	ı	1	1	ı	1
08/14/96	0,23		21.5	5350	16.0	5.31	1	i	1	1	ı	1	ī	i	t	Î
11/06/96	0.59		16.3	5130	18.0	5.14	1	1	1	a	1	1	1	ř	1	1
76/90/20	0.05	632	17.5	5390	16.0	5.24	1	1	t	I	1	1	t	i	ī	1
76/170/50	0.2		20.8	4840	12.0	5.24	ì	1		ı	L	1	1	j	1	1
08/06/97	0.13		21.5	5850	20.0	5.13	1	1	-	1	1	t	ĺ	1	1	ĭ
11/12/97	0.24		17.6	4300	90'05	5.36	1	=	÷	L	i	t	1	1	1	ı
86/90/90	0.21	582	24.2	5570	14.0	5.41	1	1	-	1	1	1	1	1	1	ı
11/10/98	<0.05	029	26.1	5060	12.0	5.19	1	1	1	1	1	t	î	1	t	t
66/90/90	0.25	605	24.0	6450	36.0	5.23	ı	1	1	ŧ	1	1	1	ı	t	1
11/03/99	90.0		19.5	6180	20.0	5.48	1	1	1	1	ı	1	ĵ,	1	ì	i
05/10/00	<0.05	099	21.5	6020	16.0	5.49	1	1	7	1	-	1	1	1	i	1
11/07/00	0.09		20.9	4610	16.0	5.53	ı	1	-	T.	1	1	1	t	1	Ī
05/09/01	0.25		18.0	5120	14.0	5.66	ı	1	1	1	ŀ	ı	1	1	1	ì
11/14/01	0.06		25.9	5110	12.0	5.62	1	ī	1	1	1	1	1	ı	1	1
05/14/02	90'0	969	21.3	4990	16.0	5.06		ī	L	i	1	ſ	1	1	f	Į
11/06/02	0,51	729	27.0	5150	16.0	4.74	1	ī	ţ	Ţ	ı	L	j,	j	ĺ	1
05/21/03	<0.05	647	28.0	7100	14.0	5.52	ı	1	-	1	1	t	ī	Ţ	4	I
11/11/03	0.07	999	20.3	4360	14.0	5.42			Ī	1	1	1	i	1	í	t
06/01/04	0.1	299	22.6	4890	16.0	5.04	1	1	ī	1	1	1	1	ī	ì	1
11/08/04	0.1		21.5	4620	16.0	7.06	ı	1	ì		1	1	î	ì.	1	I
05/02/05	0.16	723	16.8	4730	12.0	5.04	_	1	1	ı	1	1	1	1	ĭ	1
11/07/05	<0.05	999	21.8	5620	16.9	4.84	1	ı	1	L	ı	1	1	i	1	1
90/08/50	<0.05	618	20.8	5470	15.0	4.84	1.	1	1	1	1	1.	I	f	ī	1
08/14/06	1	i	i	1	1	1	<5	<5.00	625 <1	7	8.00	۲	-	<5	<5	33.0
11/07/06	<0.05	723	25.4	4990	16.0	4.96	Ĉ.	<5.00	680 <1	<1	16.0	1,00		1.00 <5	\$	33.0
02/14/07	ì	t	1	I	Ī	7.46	~	<5.00	645 <1	٧	12.0	2.00		1.00 <5	6.00	37.0
	<0.05	479	26.2	6200	63.8	6.02	\$5	<5.00	678	٧	10.0			1.00 <5	1.43	
	1.	1	1	î	1	4,88	<5	7.22	675	7	3.00	2.00	2.00	0 <5	<1.00	35.0
44107107	0.11	GAO	32.0	4200	13.0	4.89	<55	<5	099	7	27.0			0 <5	5	34.0

PAGE III-5-28-49

Date	Selenium (ug/L.)	Silver (ug/L)	Thailium (ug/L)	Vanadium (ug/L)	Zinc (ug/L)
02/07/96	i	į	Ť	ī	ī
96/60/50	1	1	1	ī	1
08/14/96	ī	1	1	1	1
11/06/96	i	1	1	1	1
02/06/97	1	1	1	ĵ	1
05/07/97	1	1	1	1	1
76/90/80	i	1	ī	1	1
11/12/97	1	1	1	í	1
05/06/98	1	ı	1	1	
11/10/98	f	1	1	1	1
66/90/50	ſ	1	ì	ı	1
11/03/99	Ť	ı	1	1	t
05/10/00	1	1	ï	Ť	1
11/07/00	1	1	1	1	Í
05/09/01	1	1	1		J
11/14/01	-	1	1	1	i
05/14/02	-	I	í	1	Ĺ
11/06/02	1	1.	i	1	Ĺ
05/21/03	1	ı	1	1	i
11/11/03	1	i	1	1	ı
06/01/04	1	ī	ī	1	1
11/08/04	ì	i	.1	1	1
05/02/05	Í	ú	1	1	1
11/07/05	1	ı	1	ı	ī
05/30/06	ī	1	1	1	ï
08/14/06	<5	<5	<5	4.00	65.0
11/07/06	\$	<5	<5	2.00	62.0
02/14/07	<5	<5	٧	< >	32.0
05/02/07	<5	<5	₹	1.00	21.0
08/27/07	<5	<5	٧	4.00	9.00
14107107	4	4	**		4 4 4

								MW-15A	-							
Date	Acetone (Ug/L)	Acryontrile (ugl.)	Benzene (ug/L)	Bromochloro methane (ug/L)	Bromodichlora methane (ug/L)	Bromoform (ug/L)	Carbon disulfide (vg/L)	Carbon telrachloride (ug/L)	Chlorobenzene (ug/L)	Chloroethane (ug/L)	Chloroform (ug/L)	Dibromochloro methano (ug/L)	1,2-Dibrano-3- chloropropane (ug/L)	1,2-Dibromoethane (vg/L)	o-Dichlorobenzene (ug/L)	p-Dichkrobenzene (up/L)
02/07/96	<20	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<20	<5.0	<5.0	<5.0	<5.0	650	75.0
96/60/50	<20	حر0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<20	<5.0	<50	<5.0	<5.0	0.50	0.50
08/14/96	_	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<20	<5.0	<50	<5.0	<5.0	<50	25.0
11/06/96	<20	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5,0	<5.0	<20	<5.0	<50	<5.0	<5.0	0.30	250
02/06/97	<20	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<20	<50	<50	<5.0	45.0	0.00	200
05/07/97	<20	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<20	<5.0	<50	<5.0	<5.0	25.0	75.0
26/90/80	<20	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<20	<5.0	<50	<50	5.0 55.0	0.00	0.50
11/12/97		<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<20	<50	<5.0	<5.0	450	0.50	V. C. C.
86/90/90	<20	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<50	00	<5.0	<50	03/	2 4	27	07
11/10/98	<20	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<50 S	<50	<20	04/	0.57	000	2.5	0.07	25.0
05/06/99	<20	<10	<5.0	<5.0	<5.0	<5.0	<50		S.5.0	620	0.47	75.0	0.0	55.0	C5.0	<5.0
11/03/99	<20	<10	<5.0	<50 <50	45.0		2		0.0	ייי	20.0	0.0	0.05	0,0	<5.0	<5.0
05/10/00	200	72	000	200	000	0,0	0.00		0.0>	«10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
44/07/00	07	01,	000	0.0	0.05	<5.U	0.6>		<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
00//0//	250	OI's	(-C)	<5.0		<5.0	<5.0	<5.0	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
LOVEDVED	022	<10	<5.0	<5.0		<5.0	<5.0	<5.0	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
_	<20	410	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
	<20	<10	<5.0	<5.0	<5.0	<5.0	<5.0	0'5>	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
		<10	<5.0	<5.0		<5.0	<5.0	<5.0	<5.0	<10	<5.0	<5.0	<5.0	<5,0	<5.0	\$0
		<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	€0
\neg	<20	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<50	<5.0
	420	40	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<50
_	<20	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<5.0	<5,0	<5.0	<5.0	<50
05/02/05	<20	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
_	<20	410	<5.0	<5,0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
_	~ 50	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<50	<50
11/07/06	\$	<10	\$	\$	<5	<5	\$	<5	<5	<10	<5	<5	<5	<5	<55	\$
		<10	\$	<5				<5	<5	<10	\$	<5 5	<5	<5	<5	<5
10/10/11	0.0>	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<5.0	<50	<5.0	ZEO	040

Angelina County Waste Management Center, Permit No. MSW 2105A, Angelina County, TX - Analytical Data

							2	MW-15A								
Dale	trans-1,4-Dichloro-2- butene (ug/L)	1,1-Dichloroethane (ug/L.)	1,2-Dichlorochane (ug/L)	1,1-Dichloroethylene (ug/L)	cts-1,2-Dichloro ethylene (ug/L)	trans-1,2-Dichloro ethylene (ug/L)	1,2-Dichleropropane (ug/L)	cis-1,3-Dichloro propene (ug/L)	trans-1,3-Dichloro propene (ug/L)	Elhylbenzena (up/L)	2-Hexamone (ug/L.)	Methyl bromide (ug/L)	Methyl chloride (ug/L)	Methylene bromide (ug/L)	Methylene chloride (ug/L)	Methyf ethyf kelone (ug/L)
02/07/96	5 <5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	420	<50	<5.0	<5.0	<20
96/60/90	5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<20	<50	<5.0	<5.0	<20
08/14/96	5.0	<5.0	<5.0	<5.0	<5.0	<5,0	<5.0	<5.0	<5.0	<5.0	<10	<20	<50	<5.0	<5.0	<20
11/06/96	5 <5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<20	<50	<5.0	<5.0	<20
02/06/97	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<20	<50	<5.0	<5.0	<20
05/07/97	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<20	<50	<5.0	<5.0	<20
08/06/97	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<20	<50	<5.0	<5.0	<20
11/12/97 <5.0		<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<20	<50	<5.0	<5.0	<20
05/06/98	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<20	<50	<5.0	<5.0	<20
11/10/98 <5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<20	<50	<5.0	<5.0	<20
05/06/99 <5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0.	<5.0	<5.0	<5.0	<5.0	<10	<20 <20	<50	<5.0	<5.0	<20
11/03/99	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	410	<5.0	<5.0	<20
05/10/00 <5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5,0	<10	<5.0	<5.0	<20
11/07/00 <5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<10	65.0	<5.0	<20
05/09/01 <5.0		<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5,0	<5.0	<10	<5.0	<10	<5.0	<5.0	<20
11/14/01	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<10	<6.0	<5.0	<20
05/14/02 <5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<10	<5.0	<5.0	<20
11/06/02 <5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<10	<5.0	<5.0	<20
05/21/03	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	410	<5.0	<10	<5.0	<5.0	<20
11/11/03 <5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<10	<5.0	<5.0	<20
06/01/04 <5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	410	<5.0	<10	<5.0	<5.0	<20
11/08/04 <5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<9.0	<5.0	<10	<5.0	<10	<5.0	<5.0	<20
05/02/05 <5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<10	<5.0	<5.0	250
11/07/05 <5.0		<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<10	<5,0	<5.0	<20
02/30/06		<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<10	<5.0	<5.0	<20
11/07/06	\$	\$	€5	€	\$	<5	<5	<5	<5	\$	<10	<5	<10	\$	\$	<20
		\$				<5	<5	\$	<5	<5	<10	<5	<10	<5	<5	<20
11/07/07	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<10	<50	<50	<20

Angelina County Waste Management Center, Permit No. MSW 2105A, Angelina County, TX - Analytical Data

Date 02/07/96															
02/07/96	Methyl lodide (ug/L)	+Methyr-2- penlanone (ug/L)	Styrene (ug/L)	1,1,1,2. Tetrachloroethane (ug/L)	1,1,2,2- Tetrachloroethane (vg/L)	Tetrachloroethylene (ug/L)	Toluene (ug/L)	1,1,1-Trichloroethane (ugh.)	1,1,2-Trichloroethane (ug/L)	Trichloroelitylene (ug/L)	Trichlorofluoromethane (ug/t.)	1,2,3-Trichloropropane (ug/L.)	Veryl acetate (ug/L)	Vinyl chloride (ugit.) Total Xyenes (ugit.)	Total Xylenes (ug/L)
	<5.0	<10	<5.0	<5.0		<5.0	<5.0	<5.0	<5.0	<50	<5.0	45.0	75.0	Ī	
96/60/50	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	€5.0	<50	(A)	250		012
08/14/96	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	75.0	0.7	20.0		OLS
11/06/96	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	75.0	0.00	27	20.0	20.0		<10
02/06/97	<5.0	<10	<5.0	<5.0	<5.0	45.0	76.0	0.00	000	0.7	0.00	0.0>	<5.0	<5.0	<10
05/07/97	<5.0	<10	c5.0	25.0	2	0.0	2 3	0.00	0.62	<5.0	<5.0	<5.0	<5.0	<5.0	<10
1	780	770	200	27	0.5	20.0	0.62	<5.U	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10
_	0.02	OLS.	<5.U	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10
_	c5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0		057
-	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<50	<5.0	75.0		1
	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<50	65.0	75.0		07
_	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	25.0	200	0.00		012
11/03/99	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<50	<50	65.0	200	0.00			olo.
05/10/00	<5.0	<10	<5.0	<5.0	<5.0	<50	<5.0	-50	750	0.5	0.00	0.0			<10
11/07/00 <5.0	<5.0	<10	45.0	<5.0	<5.0	78.0	0.00			23.0	0.6>	<5.0		<2.0	<10
05/09/01	<5.0	c10	24	200	200	0.0	0.0	0.0		<5.0	<5.0	<5.0	<5.0	<2.0	<10
_	250	200	000	200		0.0	<5.0			<5.0	<5.0	<5.0	<5.0	<2.0	<10
	0.5	01,	0.62	0.6>		<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<2.0	<10
	C2:0	OL>	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0			7
_	<5.0	<10	<5.0	<5.0		<5.0	<5.0	<5,0	<5.0	<5.0	<5.0	<5.0			210
-		<10	<5.0	<5.0			<5.0	<5.0	<5.0	<5.0	<5.0	<5.0			210
$\overline{}$		<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<50			200
_			<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0		<50			200
	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0		<5.0	<5.0			
$\overline{}$			<5.0	<5.0	<5.0	<5.0	<5.0					<50 <50			017
_	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0				760			014
90/06/50	<5.0	<10	<5.0	<5.0	<5.0		<5.0								015
_		<10	<5	<5	<5	<5	<5							5	OLS
	<5	<10	<5	<5	<5		<5						7 4	7 6	015
11/07/07	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<50							OI.

Angelina County Waste Management Center, Permit No. MSW 2105A, Angelina County, TX - Analytical Data

	Specific		Water Table of Control	۲	_												
Date	Conductance (umho/cm)	Temperature (deg C)	Dissolved Atsenic (ug/L)	nlo Dissolved Barlum (ug/L)	-	Dissolved Cadmium (ug/L)	Dissolved Chromium (ug/L)	Dissolved Copper (ug/L)	Dissolved Lead (ug/L)	Dissolved Nickel (ug/L)	Dissolved Selenium (ug/L)	Ammonta (mg/L)	Calcium (mg/L)	Chloride (mg/L)	iron (mg/L)	Magneslum (mg/L)	Potassium (mg/L)
02/07/96	3710	21.0	<5.0	<500	V	<1.0	<30	<20	<5.0	<20	<5.0	0.33	245	1060	13.5	21.0	41.2
96/60/50	3490	21.0	<5.0	<500	V	<1.0	<30	<20	<5.0	<20	<5.0	0.34	244		11.0		20.0
08/14/96	3770	21.5	<5.0	<500	v	<1.0	<30	<20	<5.0	30.0		0.35	261	1180	125	717	25.0
11/06/96	3420	21.0	<5.0	<500	V	<1.0	<30	<20	<5.0	<20		0.36	250	1160	118	79.9	4.5
02/06/97	3170	20.0	<5.0	<500	V	<1.0	<30	<20	<5.0	<20	<5.0	0.51	292	1200	116	88 5	0 11
26/20/50	2870	22.0	22.0 <5.0	<500	٧	4.0	<30	<20	<5.0	<20	<5.0	0.40	258			20.2	16.9
26/90/80	3700	22.0	22.0 <5.0	<500	V	<1.0	<30	<20	<5.0	<20	<5.0	0.46	325		9 00	54 B	44.4
11/12/97	2390	20.0	20.0 <5.0	<500	V	<1.0	<30	<20	<5.0	<20	<5.0	0.46	263		40.9	90.0	144
96/90/50	2600	22.0	22.0 <5.0	<500	, v	<1,0	<30	<20	<5.0	420	<5.0	0.46	292		15.9	66.3	14.1
11/10/98	3690	21.0	<5.0	<500	V	4,0	<30	<20	<5.0	<20	<5.0	0.44	268	1200	44.7	0.00	45.7
05/06/99	3300	23.0	<5.0	<500	V	<1.0	30	<20	<5.0	<20	<5.0	<0.10	296	1240	110	76.5	10.7
11/03/99	3400	21.0	<5.0		517 <	<1.0	30	<20	<5.0	<20	<50	0.28	070	1280	40.5	70.0	5
05/10/00	3420	23.0	23.0 <5.0		519 <1.0		30	<20	<5.0	420	<5.0	0.26	280	1260	11.5	C.21	15.7
11/07/00	3660	23.0	23.0 <5.0	<500	٧	<1.0	<30	<20	<5.0	<20	<5.0	0.29	260	1170	9.53	828	10.1
05/09/01	3800	22.5	22.5 <5.0	<500	V	<1.0	<30	<20	<5.0	<20	<5.0	0.20	277	1340	871	748	13.2
11/14/01	4050	25.0	<5.0	<500	٧	<1.0	<30	<20	<5.0	<20	<5.0	0.17	264	1130	06.6	6 76	151
05/14/02	4320	21.1	<5.0	<500	V	<1.0	<30	<20	<5.0	<20	<5.0	0.11	276	1200	8.69	85.6	16.8
11/06/02	3720	19.6	19.6 <5.0	<500	٧	<1.0	<30	<20	<5.0	<20	<5.0	0.29	276	1270	10.5	980	16.5
05/21/03	3720	21.0	21.0 <5.0	<500	٧	<1.0	<30	<20	<5.0	<20	<5.0	0.32	296	1240	10.7	102	144
11/11/03	4189	22.0	22.0 <5.0	<500	٧	<1.0	<30	<20	<5.0	<20	<5.0	0.15	277	1310	11.0	83.3	20.0
06/01/04	4222	22.0	6.20	50	546 <	<1.0	<30	<20	<5.0	<20	7.31	80.0	273	1340	11.9	75.1	10.7
11/08/04	4227	22.3			V	<1.0	<30	<20	<5.0	<20	<5.0	0.13	279	1240	13.9	76.0	15.3
05/02/05	4242	23.7	5.92	92 <500	٧	<1.0	<30	<20	<5.0	<20.0	<5.0	<0.05	275	1300	13.2	83.3	16.6
11/07/05	4229	22.7	5.24	24 <500	v	<1.00	<30	<20	<5.00	<20	<5.00	0.22	289	1210	12.6	79.1	15.4
90/30/99	4196	22.9	6.00	00 <500	V	<1.00	<30	<20	<5.00	<20.0	<5.00	0.33	285	1380	14.0	85.6	18.5
08/14/06	1	1	1	ì	-		ı	1	1	1	1	3					
11/07/06	3706	22.6	<5	<500	7		<30	<20	\$	\$	\$	0.33	276	1390	14.9	74.0	47.9
02/14/07	3689	19.4	1	ı	1		1	1	1	1	1	1	1	-		1	
05/02/07	3703	22.2	<5.00		123 <1		₽	\$	<1.00	\$	<55	0.25	300	1260	16.0	767	20.5
08/27/07	4273	23.8	r	ı	1	1		J	1	1	Ť	ĭ	1	1		1	202
11/07/07	4293	22.0	R 50	c	400					177							

Angelina County Waste Management Center, Permit No. MSW 2105A, Angelina County, TX - Analytical Data

TOS (mg/L) Toda Abalininy as Carcos (mg/L) 2680 Toda Diagon 114 2680 E6.0 2880 B0.0 3020 B4.0 3050 T72.0 3050 T72.0 3050 T72.0 3050 T72.0 3050 T72.0 3050 T72.0 3130 T70.0	n propisition of	Antimony (ug/L)	American Arrests	Orania Printer			100				
			Asserted togat	(Trick) Harrison	Beryllum (ug/L)	Cadmium (ug/L)	Chromium (ug/L.)	Cobalt (ug/L)	Copper (ug/L)	Lead (ug/L)	Nickel (ug/L)
		1	1	1	1	1	t		1	1	ĺ
	5.46	ı	ı	J	1	ı	1	t	1	1	1
	56.0 6.13	ı	1	i	1	1	1	1	1	4	1
	80.0 5.90	1	1	I	1	1	1	1	j	1	1
	84.0 6.05	-	-	-	1	1	1	1	1	J	J
	5,96	L	ı	1	1	ı	1	1	í	ī	1
	6.01	1		1	1	1	1	1	ı	1	t
	5.67	1	1	1	1	1	Ĵ		ī	1	t
1	5,88	1	1	1	1	1	1	1	i	ı	t
	70.0 6.20	1	1	j	1	1	ı	1	i	1	i
96.0	5,98	1	1	1	1	1	ı	1	ı	ï	1
54.0	6.11	1	1	1	ı	1	1	1	i	1	1
60.0		1	1	í	1		1	1		1	I
-	80'9	f.	1	î	ì	1	ŭ	ı	1	1	1
52.0	6.21	I	1	1	1	1	1	1	1	1	1
68.0	5.33	-	ı	ı	1	ı	1	1	1	ı	1
58.0	5,89	-	1	1	1	-	ı	1	ĺ	ì	1
64.0	5,60	ſ	1	1	ľ	ı	1	ĭ	1	1	1
60.0	6.16	ı	ı		1	-	ı	ı	ſ	Ť	1
52.0	6.01	1	i	£	ı	1	1	1	1	1	ı
68.0	6.17	1	Ī	1	1	ι	Ť.	1.	1	1	1
68.0	6,01		1	1	1	ı	f	1	1	ď	1
70.0	6.12	1	ĭ	1	1	t	1	ı	1	1	1
69.8	5.78	1	1	1	1	1	1	L	1	1	í
73.5	5,96	1	1	1	1	1	1	ı	7	1	1
	(5)	<5	5.47	114	114 <1	1.00		1.00	\$	\$5	45
74.0	5.58	<5	<5.00	120	120 <1	1.00 <1	<u>v</u> .	1.00	1.00 <5	\$	45
1	7.51	<5	<5.00	109	109 <1	1.00 <1	V	1.00	1.00 <5	<5	<5
70.1	6.19 <5	5	5,21	119	119 <1	₽	٧	1.00	<5	<1.00	<5
	5.78	\$	9.93	113	~	1.00	<را	<1	<5	<1.00	<5
68.0	5.73	\$	5.70	110	~	<1	7	4	<5	<۱	6.20

23-60	Calantina fried?	Charle frank	1000		1
Dafe	Selentum (ug/L)	Silver (ug/L)	Thailium (ug/L)	Vanadium (ug/L)	Zinc (ug/L)
02/07/96	1	1	I	Ţ	1
05/09/96	1	ī	1	I	ĭ
08/14/96	1	1	ı	1	1
11/06/96	1	1	1	1	1
02/06/97	1	r	1	1	1
05/07/97	1	r	ī	T	1
76/90/80	1	1	1	1	1
11/12/97	í	1	1	ı	1
86/90/50	1		1	1	1
11/10/98	t	1	1	1	1
05/06/99	ı	1	1	ı	,
11/03/99	1	1	1	ı	1
05/10/00	4	1	1	t	1
11/07/00	j.	1	1	t	1
05/09/01	1	ı	1		1
11/14/01	1	i	1	1:	1
05/14/02	1	ı	1	1	1
11/06/02	i	1	ı		í
05/21/03	1	1	9	1	1
11/11/03	1	ī	1	1	ī
06/01/04	ī	ı	i	1	i
11/08/04	1	ij	1	ī	1
05/02/05	1	i	1	1	1
11/07/05	í	i	t	î	1
90/06/50	1	Ĺ	1	ī	1
08/14/06	<5	<5	<5	2.00	\$
11/07/06	<5	<5	<5	1.00	\$
02/14/07	<5	<5	1>	7	\$
05/02/07	₹2	<5	3.00	۲	\$
08/27/07	<5	<5	₹	2.00	
11/07/07	55	4	7	2 40	31

Date																
	Acetone (ug/L)	Acrylonitrile (ug/L.)	Benzene (ug/L)	Bromochlora methane (ug/L)	Bromodichloro methane (ug/L)	Bromotorm (ug/L)	Carbon disuliide (ug/L)	Carbon (etrachloride (ug/L)	Chlorobenzene (ug/L)	Chloroethane (ug/L)	Стогобет (ид/L)	Dibromochloro melhane (ug/L)	1,2-Dibromo-3- chloropropane (up.l.)	1,2-Dibramoethane (ug/L)	o Dichlorobenzene (ug/L)	p-Dichlorobenzene (ug/L)
02/07/96	<20	<10	<5.0	<5.0	<5.0	<5.0	<5.0	45.0	0 97	00						
96/60/50	<20	<10	<5.0	<50	<5.0	75.0	2 2	2	0.7	220	<5.0	<5.0	<5.0	<5.0	€5.0	<5.0
08/14/96	<20	<10	45.0	75.0	0.7	20.0	C2.U	<5.0	<5.0	<20	<5.0	<5.0	<5.0	<5.0	<5.0	<50
_	000	2	0.0	20.0	0.65	<5.0	<5.0	<5.0	<5.0	<20	<5.0	<5.0	<5.0	<5.0	<5.0	08/
	00,	2	200	25.0	0.6>	<5.0	<5.0	<5.0	<5.0	<20	<5.0	<5.0	<5.0	75.0	2 4	0 1
	nz,	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<20	04/	24	0.5	23.0	0.00	<5.0
1	<20	<10	<5.0	<5.0	<5.0	<5.0	<5.0		<5.0	3	0.00	0.0	0.00	<5.0	<5.0	<5.0
- 1	<20	<10	<5.0	<5.0	<5.0	<5.0	<5.0		200	200	20.0	<5.0	<5.0	<5.0	<5.0	<5.0
11/12/97	<20	<10	<5.0	<50	<5.0	75.0			20.0	025	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
05/06/98 <20	<20	<10	<5.0	<50	45.0	0.00	200		<5.0	<20	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
11/10/98	<20	<10	<5.0	<5.0		200	0.0		65.0	420	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
66/90/90	<20	<10		<50		0.00	200		<5.0	<20	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
11/03/99	<20	<10		<50 <50		25.0	65.0		<5.0	<20	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
05/10/00	<20	410		0 47		25.0	<5°.0		<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
$\overline{}$	000	40		0.00			<5.0	<5.0	<5.0	<10	<5.0	<5.0	<5.0	<50	<5.0	75.0
	<20	240		65.0			<5.0	<5.0	<5.0	<10	<5.0	<5.0	<5.0	<50	65.0	200
\neg	200	0 1		C2.U			<5.0	<5.0	<5.0	<10	<5.0	<5.0	<5.0	750	0.00	0.00
1000	250	OLS		<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10		75.0	0.0	0.7	23.0	<0.0
	<20	<10	<5.0	<5.0	<5.0		<5.0		750			0.00	60.0	<5.0	<5.0	<5.0
	<20	<10	<5.0	<5.0	<5.0	-			000			<5.0	<5.0	<5.0	<5.0	<5.0
05/21/03	<20	<10	<5.0	<5.0					0.0			<5.0	<5.0	<5.0	<5,0	<5.0
11/11/03	<20	<10	<5.0	<50					0.65			<5.0	<5.0	<5.0	<5.0	<5.0
06/01/04	<20					1			<5.0	حر0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
11/08/04	<20					1				<10	<5.0	<5.0	<5.0	<5.0		<5.0
> 50/20/02								<5.0	<5.0	<10	<5.0	<5.0	<5.0	<50		75.0
+							<5.0	<5.0	<5.0	<10	<5.0	<5.0	<5.0			200
-					<5.0	<5.0	<5.0	<5.0	<5.0	<10		<5.0	Z. Z			25.0
			<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<50			200	07			<5.0
		<10	₹	<5	<5	\$	\$					CO.U	<5.U	0	<5.0	<5.0
1	<5	<10	\$	<5	<5							\$			<5	€5
11/07/07 <	<5.0	<10	<5.0	<5.0	<50				1		1	\$	€5	\$2	\$5	₹2
							1	0.62	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0

Angelina County Waste Management Center, Permit No. MSW 2105A, Angelina County, TX - Analytical Data

							2	MW-15B								
Oate	trans-1,4 Olchloro-2- butene (ug/L)	1,1-Dichlorpethane (ug/L)	1,2-Dichloroethane (ug/L)	1,1-Dichloroethyfene (ug/L)	cis-1,2-Dichloro ellylene (ug/L)	trans-1,2-Dichloro athylene (ug/L)	1,2-Dichloropropane (ug/L)	cfs-1,3-Dichlora propene (ug/L)	trans-1,3-Oichloro propene (ug/L,)	Ethylbenzene (ug/L)	Ethylbenzene (ug/L) 2-Hexanona (ug/L)	Methyl branide (ug/L)	Methyl chloride (Ug/L)	Methyfene branide (ug/L)	Methylene chloride (ug/L)	Methyl ethyl kelone (ug/L)
02/07/96	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<20	<50	<5.0	<5.0	<20
96/60/90	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<20	<50	<5.0	<5.0	<20
08/14/96	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5,0	<5.0	<5.0	<10	<20	<50	<5.0	<5.0	<20
11/06/96 <5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	420	<50	<5.0	<5.0	<20
02/06/97	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<20	<50	<5.0	<5.0	<20
05/07/97 <5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<20	<50	<5.0	<5.0	<20
	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<20	<50	<5.0	<5.0	420
11/12/97	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<20	<50	<5.0	<5.0	<20
05/06/98 <5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<20	<50	<5.0	<5.0	<20
11/10/98	<5.0	<5.0	<5.0	<5.0	<5.0	-6,0-	<5.0	<5.0	<5.0	<5.0	<10	<20	<50	<5.0	<5.0	<20
05/06/99	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<20	<50	<5.0	<5.0	<20
11/03/99 <5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<10	<5.0	<5.0	<20
05/10/00	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<10	<5.0	<5.0	<20
11/07/00	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<10	<5.0	<5.0	<20
05/09/01 <5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<10	<5.0	<5.0	<20
11/14/01	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<10	<5.0	<5.0	<20
05/14/02	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<10	<5.0	<5.0	<20
11/06/02 <5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<10	<5.0	<5.0	<20
05/21/03	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<10	<5.0	<5.0	<20
11/11/03 <5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<10	<5.0	<5.0	<20
06/01/04	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<10	<5.0	<5.0	<20
11/08/04	<5.0	<5.0	<5,0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<10	<5.0	<5,0	<20
05/02/05 <5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<10	<5.0	<5.0	<20
11/07/05		<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<10	<5.0	<5.0	<20
	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<10	<5.0	<5.0	<20
11/07/06		\$	<5	<5	<5	\$	<5	<5	<5	<5	<10	<5	<10	\$	\$	<20
05/02/07	<5	<5	<5	\$	~ 5	<5	<5	<5	<5	<5	<10	<5	<10	<5	₩.	<20
11/07/07 <5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<10	<5.0	65.0	000

OFFICIARY STATES CALLES AND									MW-15B							
450 410 450 <th>Date</th> <th>Methyl kolide (ug/L)</th> <th></th> <th></th> <th>T,T,1,2- Tetrachloroethane (ug/L)</th> <th>1,1,2,2- Tetrachloroethane (ug/L)</th> <th></th> <th>Toluene (ug/L)</th> <th>1,1,1-Trichloroethane (ug/L.)</th> <th>1,1,2-Trichloroethane (ug/L)</th> <th>Trichloroelly/ene (Vg/L)</th> <th></th> <th>1,23-Trichloropropane (vg/L)</th> <th>Vinyl acetale (Ng/L)</th> <th>Vinyl chloride (up/L)</th> <th>Total Xylenes (up/l</th>	Date	Methyl kolide (ug/L)			T,T,1,2- Tetrachloroethane (ug/L)	1,1,2,2- Tetrachloroethane (ug/L)		Toluene (ug/L)	1,1,1-Trichloroethane (ug/L.)	1,1,2-Trichloroethane (ug/L)	Trichloroelly/ene (Vg/L)		1,23-Trichloropropane (vg/L)	Vinyl acetale (Ng/L)	Vinyl chloride (up/L)	Total Xylenes (up/l
650 610 650 <td>96/10/</td> <td>\rightarrow</td> <td><10</td> <td><5.0</td> <td><5.0</td> <td><5.0</td> <td>1 - 2</td> <td><5.0</td> <td><5.0</td> <td><5.0</td> <td><5.0</td> <td><5.0</td> <td>77.0</td> <td>0 37</td> <td>C L</td> <td>0,7</td>	96/10/	\rightarrow	<10	<5.0	<5.0	<5.0	1 - 2	<5.0	<5.0	<5.0	<5.0	<5.0	77.0	0 37	C L	0,7
450 450 <td>96/60/</td> <td>-</td> <td>410</td> <td><5.0</td> <td><5.0</td> <td><5.0</td> <td><5.0</td> <td><5.0</td> <td><5.0</td> <td>650</td> <td>75.0</td> <td>0.5</td> <td>2 4</td> <td>63.0</td> <td>0.65</td> <td><10</td>	96/60/	-	410	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	650	75.0	0.5	2 4	63.0	0.65	<10
40 40<	114/96	_	<10	<5.0	<50	<5.0	<5.0	75.0	0.37	0 1	0.7	20.0	<5.0	0°5	<5.0	<10
450 450 <td>96/90/</td> <td>_</td> <td><10</td> <td>0,50</td> <td>75.0</td> <td>0 4</td> <td>25</td> <td>200</td> <td>0.00</td> <td>23.0</td> <td>C5.U</td> <td><5.0</td> <td><5.0</td> <td><5.0</td> <td><5.0</td> <td><10</td>	96/90/	_	<10	0,50	75.0	0 4	25	200	0.00	23.0	C5.U	<5.0	<5.0	<5.0	<5.0	<10
5.0. 4.10 4.50 <th< td=""><td>106/07</td><td>+</td><td>240</td><td>200</td><td>0.7</td><td>23.0</td><td>63.0</td><td>49.0</td><td><5.0</td><td><5.0</td><td><5.0</td><td><5.0</td><td><5.0</td><td><5.0</td><td><5.0</td><td><10</td></th<>	106/07	+	240	200	0.7	23.0	63.0	49.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10
550 510 <td>1000</td> <td>_</td> <td>Ols,</td> <td>0.0</td> <td>0.6></td> <td><5.0</td> <td><10</td>	1000	_	Ols,	0.0	0.6>	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10
4:00 4:00 <th< td=""><td>16/10/</td><td>-</td><td><10</td><td><5.0</td><td><5.0</td><td><5.0</td><td><5.0</td><td><5.0</td><td><5.0</td><td><5.0</td><td><5.0</td><td><5.0</td><td><5.0</td><td><50</td><td><5.0</td><td>70</td></th<>	16/10/	-	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<50	<5.0	70
450 470 450 <td>06/97</td> <td>-</td> <td><10</td> <td><5.0</td> <td><5.0</td> <td><5.0</td> <td><5.0</td> <td><5.0</td> <td><5.0</td> <td><5.0</td> <td><5.0</td> <td>\$50 \$50</td> <td><5.0</td> <td>0.47</td> <td>0.00</td> <td>017</td>	06/97	-	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	\$50 \$50	<5.0	0.47	0.00	017
450 450 <td>12/97</td> <td><5.0</td> <td><10</td> <td><5.0</td> <td><5.0</td> <td><5.0</td> <td><5.0</td> <td><5.0</td> <td><5.0</td> <td><5.0</td> <td><50</td> <td><50</td> <td>65.0</td> <td>0.00</td> <td>0.00</td> <td>Oly Oly</td>	12/97	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<50	<50	65.0	0.00	0.00	Oly Oly
50 40 60<	86/90	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<50	<50	0.00	0.00	20.0	OLS
40 40<	10/98	\neg	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	75.0	74.0	200	0.0	0.0	015
610 620 <td>66/90</td> <td></td> <td><10</td> <td><5.0</td> <td><5.0</td> <td><5.0</td> <td><5.0</td> <td><50</td> <td><5.0</td> <td>45.0</td> <td>0.0</td> <td>0.00</td> <td>0.0</td> <td>0.0</td> <td><5.0</td> <td><10</td>	66/90		<10	<5.0	<5.0	<5.0	<5.0	<50	<5.0	45.0	0.0	0.00	0.0	0.0	<5.0	<10
60 (10) (50) (66/60	_	<10	<5.0	<5.0	<5.0	<5.0	75.0	2.4	0.00	200	0.07	<0.0	0.6>	<5.0	<10
50 40 50 40<	10/00		<10	<5.0	/50	2007	0.00	0.7	0.0		69.0	<5.0	<5.0	<5.0	<2.0	<10
5.0 5.0 <td>07/10</td> <td></td> <td>710</td> <td>0.5</td> <td>200</td> <td>0.0</td> <td>c5.0</td> <td>65.0</td> <td><5.0</td> <td></td> <td><5.0</td> <td><5.0</td> <td><5.0</td> <td><5.0</td> <td><2.0</td> <td><10</td>	07/10		710	0.5	200	0.0	c5.0	65.0	<5.0		<5.0	<5.0	<5.0	<5.0	<2.0	<10
5.00 5.00 <th< td=""><td>10/01</td><td>+</td><td>27</td><td>0.0</td><td>23.0</td><td>65.0</td><td><-2.0</td><td><5.0</td><td><5.0</td><td><5.0</td><td><5.0</td><td><5.0</td><td><5.0</td><td><5.0</td><td><2.0</td><td><10</td></th<>	10/01	+	27	0.0	23.0	65.0	<-2.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<2.0	<10
5.0. 5.0. <th< td=""><td>1000</td><td>+</td><td>OI's</td><td>0.0</td><td><5.0</td><td><5.0</td><td><5.0</td><td><5.0</td><td><5.0</td><td><5.0</td><td><5.0</td><td><5.0</td><td><5,0</td><td><5.0</td><td><2.0</td><td>410</td></th<>	1000	+	OI's	0.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5,0	<5.0	<2.0	410
4.0 410 450 <td>104</td> <td></td> <td>01.5</td> <td>45.0</td> <td><5.0</td> <td></td> <td><5.0</td> <td><5.0</td> <td><5.0</td> <td></td> <td><5.0</td> <td><5.0</td> <td><5.0</td> <td><50</td> <td>000</td> <td>710</td>	104		01.5	45.0	<5.0		<5.0	<5.0	<5.0		<5.0	<5.0	<5.0	<50	000	710
450 410 450 <td>4/02</td> <td></td> <td><10</td> <td><5.0</td> <td><5.0</td> <td></td> <td><5.0</td> <td><5.0</td> <td><5.0</td> <td></td> <td><5.0</td> <td><5.0</td> <td><5.0</td> <td><50</td> <td>220</td> <td>2 5</td>	4/02		<10	<5.0	<5.0		<5.0	<5.0	<5.0		<5.0	<5.0	<5.0	<50	220	2 5
430 410 450 <td>ZOJOC</td> <td>0.62</td> <td>حـا0</td> <td><5.0</td> <td><5.0</td> <td></td> <td><5.0</td> <td><5.0</td> <td><5.0</td> <td></td> <td><5.0</td> <td><5.0</td> <td><5.0</td> <td><50</td> <td>000</td> <td></td>	ZOJOC	0.62	حـا0	<5.0	<5.0		<5.0	<5.0	<5.0		<5.0	<5.0	<5.0	<50	000	
\$40 \$410 \$610	50/15	0.6>	<10	<5.0	<5.0			<5.0	<5.0		<5.0	<5.0	<50	<5.0		40
\$\x20\$ \$\x20\$<	- 1	<5.0	<10	<5.0	<5.0		<5.0	<5.0			<5.0	<5.0	<5.0	<50		0,70
450 470 650 <td>11/04</td> <td></td> <td><10</td> <td><5.0</td> <td><5.0</td> <td></td> <td><5.0</td> <td><5.0</td> <td></td> <td></td> <td><5.0</td> <td><5.0</td> <td><50</td> <td><50</td> <td></td> <td>0,70</td>	11/04		<10	<5.0	<5.0		<5.0	<5.0			<5.0	<5.0	<50	<50		0,70
450 410 450 <td>18/04</td> <td></td> <td><10</td> <td><5.0</td> <td><5.0</td> <td></td> <td></td> <td><5.0</td> <td></td> <td></td> <td><5.0</td> <td><5.0</td> <td><5.0</td> <td>SS0</td> <td></td> <td>740</td>	18/04		<10	<5.0	<5.0			<5.0			<5.0	<5.0	<5.0	SS0		740
\$5.0 \$1.0 \$5.0 <th< td=""><td>2002</td><td>0.6></td><td><10</td><td><5.0</td><td></td><td></td><td></td><td><5.0</td><td></td><td></td><td></td><td><5.0</td><td><5.0</td><td></td><td></td><td>240</td></th<>	2002	0.6>	<10	<5.0				<5.0				<5.0	<5.0			240
45.0 410 45.0	201/0	<5.0	<10	<5.0	<5.0		A	<5.0				<5.0	<5.0			200
\$5 \$10 \$5	90/08	_	<10	<5.0				<5.0				<5.0	<5.0			240
<5 <10 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5			<10	\$		<5		<5				\$5	<5			40
<5.0 <10 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.		\$	<10	<5		<5		5				\$	<5			010
			<10	<5.0								<5.n				0 0

Angelina County Waste Management Center, Permit No. MSW 2105A, Angelina County, TX - Analytical Data

								DILANIA								
Date	Specific Conductance (umho/cm)	Temperature (deg C.)	Dissolved Arsenio (ug/L)	Dissolved Barlum (ug/L)	Obsoved Cadmium (ug/L)	Dissolved Chrombun (ug/L)	Dissolved Copper (ug/L)	Dissolved Lead	Dissolved Nickel	Dissalved Selenium	Ammonia (mg/L)	Calcium (movil.)	Chlockle (mon)	Sec. Co.		
11/06/96	2850	20.0	<5.0	<500	<1.0	<30	007	200	Contract Con	(neta)		L. P. J.	facility and	nou (mg/L)	Magnesium (mp/L)	Polassium (mg/L)
02/06/97	1896	19.0		<500		000	000	20.0	075	<5.0	0.50	173	598	6.40	48.2	114
76/80/50	2330	21.0	210 <50	<500	0,17	000	025	0.6>	<20	<5.0	0.53	190	566	3.68	59.5	117
76/90/80	2570	22.0	55.0	7500	0.17	230	07>	<5.0	<20	<5.0	0.50	178	622	0.94	46.7	2 4
11/12/97	2140			2500	27.0	230	420	<5.0	<20	<5.0	0.32	197	612	0.74	37.5	0.00
02/10/98	2010	0.00		000	0,7	<30	<20	<5.0	<20	<5.0	0.50	197	622	282	50.00	0.0
05/06/9R	1052	20,00	0.00	2000	0.12	<30	<20	<5.0	<20	<5.0	1.00	179	617	4 20	0,70	13,3
08/05/98	2800		25.0	2000	<1.0	<30	<20	<5.0	<20	<5.0	0.55	179	623	20.1	35.2	17.5
11/10/9R	2700	40.0	65.0	2000	<1.0	<30		<5.0	<20	<5.0	0.46	178	627	1.00	43.0	16.3
OFFICEROO	0000	0.65 0.81	0.65	006>	41.0	<30	<20	<5.0	<20	<5.0	0.45	168	-	30.07	5.10	16.3
44100100	3000	18.0 <5.0	<5.0	<500	<1.0	<30	<20	<5.0	<20	<5.0	0.40	174	-	-1	46.9	15.1
66/60	27.20		<5.0	<500	<1.0	<30	<20	<5.0	<20	<50	0.35	170	027	0.94	53.2	13.3
00/01/60	2830	23.0	<5.0	380	<1.0	<30	<20	<5.0		75.0	0.00	OV.	ccq	1.53	51.5	15.4
11/07/00	2750	21.0	<5.0	<500	<1.0	<30				0.00	0.47	180	627	2.06	48.3	14.5
05/09/01	2950	21.9 <5.0	<5.0	<500						0.00	0.33	156	604	2.17	57.3	14.0
11/14/01	3060	21.0 <5.0	<5.0	<500				25.0		<5.0	0.15	182	643	1.83	49.8	12.4
05/14/02	3280	20.9	<5.0	<500				0.0		<5.0	0.11	216	613	1.59	63.1	146
11/06/02	2890	20.1	<5.0	~500						<5.0	0.12	200	623	1.45	59.4	18.1
05/21/03	2890	20.8	<5.0							<5,0	0.32	171	651	3.15	57.9	12.7
11/11/03	3251	212 <50	25.0							<5.0	0.30	204	604	1.29	57.5	7 00
06/01/04	3278	700	0.94	1				<5.0	<20	<5.0	0.17	207	632	0.47	587	200
11/09/04	3255		20.0					<5.0	<20	<5.0	0.14	180	618	3 30	400	5.00
05/02/05	3246	20.7	20.0					<5.0	<20	<5.0	0,27	186	604	2 2 2	49.0	15.8
2010	0220	6.22				<30	<20	<5.0	<20	<5.0	70.0	100	400	0000	3.3	14.1
COLLONI	3253			<500	<1.00	<30	<20	<5.00	<20		20.05	200	043	3.30	56.9	14.8
05/31/06	3224	22.1	<5.00	<500	<1.00	<30					- 1	186	629	3.54	51.8	13.6
08/14/06 -		i	r	1	1					23.00	0.57	195	989	3.04	53.0	17.2
11/08/06	2855	20.3	<5 5	<500		90	00			1		1				
02/14/07	2695	15.8						0	φ.	<5	0.49	178	632	3.35	48.5	15,6
05/02/07	2739	24.4 <	<5.00	102		,	1 3	1 7		1		1	1			
08/27/07	3213	28,3 -	1					1.00	14.0 <	\$	0.54	181	576	3.40	50.4	17.9
11/07/07	3205	21.7 <5	iù.	140		7				1		1	4	ľ	2	
				2			<2		4	<5	92.0	160	280	3.10	43.0	130

580

160

Angelina County Waste Management Center, Permit No. MSW 2105A, Angelina County, TX - Analytical Data

Date																
	Nitrate (mg/L)	Sodium (mg/L)	Sulfate (mg/L)	TDS (mg/L)	Total Abalinity as CaCO3 (mg/L)	(sign pls) Hd	Antimony (ug/L)	Arsenic (ug/L)	Barium (ug/L)	Beryfium (ug/L)	Cadmium (ug/L)	Chromium (ug/L)	Coball (ug/L)	Cooper (tool)	1 and Auto	Maked Assets
11/06/96	<0.05	449	321	1930	370	6.60	1							1-0-1-11	(160)	Nexe (ng/L)
02/06/97	<0.05	396	381	1870	336	667			1	1	i	1	i	1	1	1
26/80/90	0,13		359	1850	338	663		i.	i	r		Ĩ	ι	1	1	1
26/90/80	0.31	345	262	1900	366	6.03		Í :	ı	1	L	1	ı	1	1	Î
11/12/97	0.20		410	1970	346	6.70		1	ı	1	1	1	1	1	1	1
02/10/98	0.29		423	1910	346	0.70		Į.	1	1	1	1	i	1	1	1
05/06/98	0.30	390	350	1830	338	6.45		ı	1	t	1	ĺ	1	1	ı	1
86/50/80	0.28	406	328	1880	354	5.53		t	1	1	t	í	1	1	1	1
11/10/98	0.07	436	355	1910	342	6.61			1	1	I	1	1	1	1	T
05/06/99	0.41	390	337	2050	362					t	1	I	1	1	1	į.
11/03/99	0,13	454	259	2050	346					1	í	1	1	1	i	1
05/10/00	0,26	432	293	1960	342				ı	1	t	1	í	1	ı	1
11/02/00	80.08	440	301	1940	336			1	1	1	1	1	L	ī	1	Ĭ
05/09/01	0.20	386	263	1980	342	_					1	1	1	1	į.	ĩ
11/14/01	<0.05	339	381	1890	346						1	1	1	Ĺ		1
05/14/02	0.12	386	350	1970	360	6.78			1	1.	t	Ĺ	1	ı	Ĭ	1
11/06/02	<0.05	466	375	2020	356	6.47			ı	1	1	ı	1	1	1	I
05/21/03	0.18	439	354	2030	386	7.08			ï		1	j	ı	ı		ı
11/11/03	0.12	456	373	1940	362	S BO			Ī		1	ţ	T	T.	ı	1
06/01/04	<0.05	460	340	1960	372	7 06			t		1	1	ī	1	1	ı
11/09/04	<0.05	450	330	1920	372	00.5					í	1	i	1	1	1
05/02/05	0.05	464	302	1890	372	707		i	1		1	1	i	í	1	1
11/07/05	<0.05	445	316	1960	378	-				1	1	1	1	ı	ı	1
05/31/06	<0.05	473	294	1890	404						1	ï	1	ì	1	1
08/14/06	i	J						00.5	000	1 3		ī		ı	1	1
11/08/06	<0.05	491	345	1910	382	7 03 7		20.00	0.00	,	15	1.00 <1		10.0	<5	<5
02/14/07	Î.			b				00.00	100 co		7				₹2	<5
05/02/07	<0.05	401	312	1840	UCP	2,027		00.65	103 <1		Q.	1.00	<1	<5	<5	\$
08/27/07	1	ı				00.7		00.65	101	~	7	7	۷۱	<5	<1.00	<5
11/07/07	<0.05	390	340	1000	COC	2000		20.00	104		v		·	<5	<1.00	<5
			200	200	nen	20.0		\$	130 <1		7	4.70	1.80	5.10	2.00	7.20

7.20

					-
Date	Selenium (ug/L)	Silver (vg/L)	Thalitum (ug/L.)	Vanadium (ug/L)	Zinc (ugit.)
11/06/96	t	1	1	1	1
02/06/97	t		į	ı	1
05/08/97	1	1	1	i	1
76/90/80	1	1	-	i	1
11/12/97	t	1	1	t	1
02/10/98	ij.	1	1		1
86/90/50	1	1	1		1
08/02/98	1	ī	1	1	1
11/10/98	1	1	1		ı
05/06/99	1	ı	1,	1	1
11/03/99	1.	1	1	1	1
05/10/00	í	ı	J	1	1
11/07/00	ı	ĭ	1	ī	,
05/09/01	1	ì	1	i	1
11/14/01	1	4	1	1	1
05/14/02	1	ì	î	1	
11/06/02	1	1		ı	1
05/21/03	-	1	1	1	1
11/11/03	1	ı	J	1	t
06/01/04	Į	1	1	1	i
11/09/04	1	1	1	1	1
05/02/05	1	1	ī	1	
11/07/05	1	1	1	í	1
05/31/06	ŧ	1		Ī	ĭ
08/14/06	<5	<5	<5	1.00	91.0
11/08/06	<5	<5	<5	4	11.0
02/14/07	<5	<5	۲۷	7	31.0
05/02/07	<5	<5	7	٧.	1
08/27/07	<5	<5	7	1.00	21.0
11/07/07	<55	45	-	000	4 11

Date	Acetone (ug/L)	Acrylonfulle (ug/L)	Benzene (ug/L)	Bromochloro methane (ug/L)	Bromodichloro melhane (ug/L)	Bromoform (ug/L)	Carbon disulfde (ug/L)	Carbon (etrachloride (ug/L)	Chlorobenzene (ug/L)	Chioroethane (ug/L)	Сываебот (ид/L.)	Dibromochioro methane (ug/L)	1,2-Dibromo-3- chloropropane (ugrt.)	1,2-Dibromoethane (ug/L)	o-Dichlorobenzene (ug/L)	p-Dichloroberzene (ug/L)
11/06/96	<20	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<20	<5.0	<5.0	450	247	, u	o u
02/06/97	<20	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	\$50	000	65.0	0.00	0.00	000	0.00	63.0
76/80/50	<20	<10	<5.0	<5.0	<5.0	<5.0	<5.0	75.0	0.80	2 5	0.00	0.0	25.0	0.0	0.6>	<5.0
× 76/90/80	<20	<10	<5.0	65.0	Z.F.O.	75.0	0.00	200	0.07	250	75.0	65.0	C5,U	<5.0	<5.0	<5.0
	000	2	200	0.0	0.7	20.0	0.05	0.65	0.65	<20	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
$^{-}$	250	OLS	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<20	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
	<20	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<20	<5.0	<5.0	<5.0	<50	<50	<5.0
-	<20	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<20	<5.0	<5.0	<50	<50	C5.0	75.0
_	<20	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<20	<5.0	<50	<50	<5.0	65.0	75.0
_	<20	<10	<5.0	<5.0	<5.0	<5.0	<5,0	<5.0	<5.0	<20	<5.0	<5.0	<50	<50	65.0	0.50
	<20	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	410	<5.0	<50	<5.0	650	0.07	0.00
	<20	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<5.0	<5.0	25.0	25.0	0.00
	<20	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<5.0	<50	250	V.5.0	75.0
		40	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<5.0	<50	<50	65.0	2 4
1		<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<50	<5.0	<5.0	75.0	2.0
05/14/02 <	<20	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<50	<5.0	-50 -50	0.0	200	0.0%
	<20	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	₹ 70	<5.0	2.5 2.50	0.0	0.00	20.0	25.0
05/21/03 <	<20	<10	<5.0	<5.0	<5.0	<5.0	<5.0		-50	07/	0.4	200	0.00	0.0	0.65	0.05
11/11/03 <	<20	<10	<5.0	<5.0	<5.0	<50	Z.E.O.		000	200	0.00	000	0.0	0.65	<5.0	<5.0
06/01/04 <		<10	<50	<50	<5.0	75.0	20.0		20.0	010	65.0	<5.0	<5.0	<5.0	<5.0	<5.0
11/09/04 <	<20	<10	65.0	750	200	000	20.0		20.0	OL>	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
		720	000	0.00	0.00	0.05	65.0		C2.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
_		015	25.0	0.65	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<5,0	<5.0	<5.0	<5.0	<5.0
-		015	<5.U	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
		<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<5.0	<50	<50	<5.0	750
		<10	<5	<5	<5	<5	<5	<5	<5	<10	<5	<5	c5.	<5.	4,5	0,0
		<10	<5	5	<5	<5	<5	<5	<5	<10	\$	₩.	<5	\$	7 4	9 4
11/07/07	<5.0	<10	<5.0	<5.0	<50	<5.0	- FO	78.0	041					,	2	?

								100								
Date	trans-1,4 Dichloro-2- butene (ugfL)	1,1-Dichloroethane (ug/L)	1,2-Dichloroethane (ug/L)	1,1-Dichloroethylene (ug/L)	cis-1,2-Dichloro ethylene (ug/L)	trans-1,2-Dichloro ethylene (ug/L)	1,2-Dichloropropane (ug/L)	cts-1,3-Dichloro propene (ug/L)	frans-1,3-Dichloro propene (ug/L)	Elhylbenzene (ug/L.)	2-Hexanone (ug/L)	Methyl bromide (ug/L)	Methyl chloride (ug/L)	Methylene bromide (ug/L)	Methylene chloride (ug/L)	Methyl ethyl kelone (ug/L)
11/06/96	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<50	<5.0	24	740	ç				
02/06/97	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	25 n	75.0	0.0	0.00	014	250	oc>	<5.0	<5.0	<20
76/80/30	<5.0	<5.0	<5.0	<5.0	VE.0	200		0,0	0.0	C2:0	01>	<20	<50	<5.0	<5.0	<20
76/90/80		<5.0	75.0	0.5	0.00	0.0	25.0	CD.U	<5.0	<5.0	<10	<20	<50	<5.0	<5.0	<20
14/42/07		27	0.57	0.0	<5.0	0.65	<5.0	<5.0	<5.0	<5.0	<10	<20	<50	<5.0	<5.0	420
100000	0.0	20.0	<5.U	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<20	<50	<50	<5.0	062
US/OB/SER <5.0	C5.U	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	00	<50	(F.O	0.00	025
86/50/80	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<40	000	200	200	0.0	220
11/10/98 <5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	\$50	<5.0	0.87	7	027	200	0.0	C5.U	<20
05/06/99	<5.0	<5.0	<5.0	<5.0	<50	<50.	<5.0	ZE.0	200	0.00	012	075	00>	<5.0	<5.0	<20
11/03/99	<5.0	<5.0	<5.0	<5.0	VE.0	75.0	0.00	7	20.0	V2.0	OL>	420	<50	<5.0	<5.0	<20
05/10/00 <5.0	<50	25.0	250	200	0,0	20.0	65.0	<5.0	€5.0	<5.0	<10	<5.0	<10	<5.0	<5.0	<20
11/07/00	75.0	200	0.00	0.0	0.05	<5.U	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<10	<5.0	<5.0	<20
		20.0	0.05	c5.U	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<10	<5.0	<5.0	000
		45.0	<5.0	<5.0		<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<10	<50	<50	062
		<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<10	650	2 4	000
	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	710	ZE.0		0.00	0,0	075
11/06/02	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0		<5.0	<5.0		770	0.00	Oly	000	<5.0	<20
05/21/03	<5,0	<5.0	<5.0	<5.0	<50	<50		/F.O	0.00		015	20.0	OL>	<5.0	<5.0	<20
11/11/03 <5.0	<5.0	<5.0	<5.0	<5.0				200	20.0		C10	€5.0	<10	<5.0	<5.0	<20
06/01/04	<5.0		<50	<50				25.0	C2:0		<10	<5.0	<10	<5.0	<5,0	<20
11/09/04	<5.0		<50					65.0	C5.U		<10	<5.0	<10	<5.0	<5.0	<20
05/02/05 <5.0	<5.0		200					<5.0	<5.0	<5.0	<10	<5.0	<10	<5.0	<5.0	<20
11/07/06	0.50							<5.0	<5.0	<5.0	<10	<5.0	40	<5.0	<5.0	200
20,100	0.0					<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<10	<50		000
	0.62	0	0	0	0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<10			000
-	Cy I				1,	<5	<5	<5	<5	\$	<10	<5				<20
_	50					<5	<5	<5	<5	\$	<10					250
TOTAL TOTAL	V.C.>	0.6>	<5.0	<5.0	<5.0	<5.0	<5.0	65 O	080	75.0						2

44440yl.2. Styrene (ug/L) pentanone (ug/L) < 5.0 < 5.0												
	1,1,1,2. Tetrachloroethane (ug/L)	1,1,2,2. Telrachloroethane (ug/L)	Tetrachlorpethylene (up/L)	Toluene (ug/L)	1,1,1-Trichloroethane (up/L)	1,1,2-Inchloroethane (ug/L)	Trichloroethylene (ug/L)	Trichlorofluoromethane (ug/L)	1,2,3-Trichloropropane (ug/t.)	Vinyl acetate (ug/L)	Viny chloride (ug/L)	Total Xylenes (ug/L)
	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	750	75.0	c u	1		
<5.0	<5.0	<5.0	<5.0	<5.0	<5n	2,0,7	0.00	200	0.65	<5.0	<5.0	<10
<5.0	<5.0	<5.0	<5.0	75.0	200	20.0	23.0	69.0	<5.0	<5.0	<5.0	<10
750	75.0	0 1	200	0,0	20.0	0.65	<5.0	<5.0	<5.0	<5.0	<5.0	<10
2 0	0.0	60.0	0.65	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<50	<10
C2.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<50	<5.0	750	710
<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	75.0	200	0	Ols.
<5.0	<5.0	<5.0	<5.0	<5.0	<5.0		650	20 4	0.5	25.0	0.65	410
<5.0	<5.0	<5.0	<5.0	<5.0	<50		75.0	0.00	5.0	<5.0	<5.0	<10
<5.0	<5.0	<5.0	<5.0	<5.0	76.0	0.7	20.0	25.0	<5.0	<5.0	<5.0	<10
<5.0	<5.0		650	200	0.00	0.0	<0.0	<5.0	<5.0	<5.0	<5.0	<10
<5.0	65.0	75.0	200	200	20.0	45.0	<5.0	<5.0	<5.0	<5.0	<2.0	<10
0 0	200	0.00	23.0	0.65	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<2.0	<10
0.0	45.0		<5.0	<5,0	<5.0	<5.0	<5.0	<5.0	<5.0	<50	00	240
200	0.65		<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<2.0	70
C2.0	<5.0		<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<50	<5.0	000	200
<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<50	<5.0	0,50	200	0.0	015
<5.0	<5.0	<5.0	<5.0	<5.0	<5.0			250	0.00	0.00	0.75	OL>
<5.0	<5.0	<5.0	<5.0	<5.0	<5.0			200	0.0	25.0	<2.0	<10
<5.0	<5.0	<5.0	<50	CR.0	, E.O.			20.0	0.05	<5.0	<2.0	<10
<5.0	<5.0		<5.0	2,0,7	2.0			<5.0	<5.0	<5.0	<2.0	<10
<5.0	<5.0		650	25.0	25.0			<5.0	<5.0	<5.0	<2.0	<10
<5.0	75.0		0.4	200	0.0			<5.0	<5.0	<5.0	<2.0	<10
0,0	0.00		c5.U	<5.0	<5.0		<5.0	<5.0	<5.0	<5.0	<2.0	<10
0.0	0.65		<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<50		70
<5.0	<5.0	0	<5.0	<5.0	<5.0	<5.0		<5.0	<50	250		000
<5	45	5	<5	<5	<5	<5		7.		200		cln
<5	<5	<5	\$	<5	<5							<10
<5.0	<5.0	<5.0	<5.0	<5.0	0				7	0	25	<10

Angelina County Waste Management Center, Permit No. MSW 2105A, Angelina County, TX - Analytical Data

					1000	The second second										
Date	Specific Conductance (umho/cm)	Temperature (deg C)	Dissolved Arsenic (ug/L)	c Dissolved Barium (ug/L)	n Dissolved Cadmium (ug/L)	Dissolved Chrombin (ug/L)	Dissolved Copper (ug/L)	Discolved Lead (ug/L)	Dissolved Nickel (ug/L)	Dissolved Selenium (ug/L)	Ammonia (mg/L)	Calcium (mg/L)	Chloride (mg/L)	fron (mg/L)	Magnesium (mg/L)	Polassium (mg/L)
11/06/96	5240	21.0	6.70	0 <500	<1.0	<30	<20	<5.0	<20	<5.0	0.10	340	1240	70.02	0	
02/07/97	3970	20.0	5.80	0 <500	41.0	<30	<20	<5.0	30.0	100	0.50			1440 70.05	30.1	7.0
76/80/50	3980	20.0	<5.0	<500	<1.0	<30	000>	<5.0	000					20.00	901	11.7
76/90/80	4630		<5.0	<500	1.04	-	200	<50	<20	7.43	04.07				93.2	14.3
11/12/97	9730	-	6.60	-		-	000	000	07	1		3/3		<0.05	90.4	8.10
20140100	00.00		1	_	0,12	<30	620	<5.0	<20	<5.0	<0.10	316	1340	<0.05	107	13.2
02/10/98	0505	-	<5.0		<1.0	<30	<20	<5.0	<20	<5.0	0,40	356		1260 <0.05	93.7	15.3
05/06/98	3410	21.0	5.30	0 <500	<1.0	<30	<20	<5.0	29.0	<5.0	<0.10	358		1240 <0.05	883	47.2
08/02/98	5150	23.0	<5.0	<500	<1.0	<30	<20	<5.0	26.0	<5.0	<0.10	364		90.07	200	14.
11/10/98	5190	20,5	<5.0	<500	<1.0	<30	<20	<5.0	<20			304		20.00	102	14.2
05/06/99	4510	21.0	<5.0	<500	<1.0	30	<20	<5.0	<20	<50		376		70 OF	010	12.1
11/03/99	5130	23.0 <5.0	<5.0	<500	<1.0	<30	<20	<5.0	000	90 9		356		20.00	876	11.4
05/10/00	4990	21.0 <5.0	<5.0	317	7 <1.0	<30	<20	<50	00	450		25.7		00.07		12.3
11/07/00	4960	22.0	<5.0	<500		<30	<20	750	8	000	20.00	J.CC		60'0		12.3
05/09/01	529n	716	CF.0	7500	7	000	2	0.7	07.	77	20.02	3//		<0.05	88.1	11.8
14144104	2000		2 4	200	0.17	7	250	0.0	075	<5.0	<0.05	332	1250	<0.05	95.0	11.1
DEMANON	0000	0.12	0.0	000	0.1.0	230	075	<5.0	<20	7.70	-	340	1270	<0.05	114	11.4
2014-10	0100	20.6 <5.0	69.0	2000	0.r>	<30	<20	<5.0	<20	11.9	<0.05	320	1340	<0.05	103	11.5
11/00/02	0250		<5.0	<500	4.0	<30	<20	<5.0	<20	11.4	<0.05	313		1240 <0.05	100	9,56
05/21/03	5320		<5.0	<500	<1.0	<30	<20	<5.0	<20	<5.0	<0.05	356	1190	<0.05	114	9.43
11/11/03	5827	22.2	<5.0	<500	<1.0	<30	<20	<5.0	<20	13.8	<0.05	373		0.00	106	976
06/02/04	5840	20.6 <5.0	<5.0	623	0.1> 6	<30	<20	<5.0	<20	13,9	<0.05	285		<0.05	103	9.45
11/09/04	5759	23.1 <5.0	<5.0	<500	<1.0	<30	<20	<5.0	28.1	11.6	<0.05	277		4	0.08	9 90
05/03/05	5203	18.5 <5.0	<5.0	<500	<1.0	<30	<20	<5.0	<20	<5.0	<0.05	281	1070	0.11	88.0	8.03
11/08/05	5391	24.9	<5.00	<500	<1.00	<30	<20	<5.00	39.3	<5.00	<0.05	283	1010	0.24	848	10.0
90/08/90	5730	20.7	1	i	1	1	j	1	1	1	1					20.0
08/15/06	1	-	ī	t	i	Ī	1	1	1	1	1					
11/08/06	4953	23.2 <	<5	<500	7	<30	<20	<5	10.01	\$	<0.05	314	1290	<0.05	000	000
02/14/07	4924	13.4		1	ī	ì	1	1	1	J	ı				200	12.0
- 20/20/50	1		1	1	Î	ĵ	ī	1	1	1						1
08/27/07	2885	31.2	1	1	ī	1	1	i	ı	1	1					
11/08/07	2629	17.1	6.50	93.0	1	07.0	Cuu	**	COF	200						

Angelina County Waste Management Center, Permit No. MSW 2105A, Angelina County, TX - Analytical Data

Date																
	Nitrate (mg/L.)	Sodium (mg/L)	Sulfate (mg/L)	TDS (mg/L)	Total Alkalinity as CaCO3 (mg/L)	pH (sid units)	Antimony (ug/L)	Arsenic (ug/L.)	Barium (ug/L)	Beryllum (ug/L)	Cadmium (vg/L)	Chromium (ug/L)	Coball (ug/L)	Copper (ug/L)	Lead (ug/L)	Nickel (worl.)
11/06/96	20.0	882	498	3800	742	6.85	1	1								(max)
02/07/97	0.07	768	484		684	6.96	1	1	1				ı	1	1	1
05/08/97	0.22	827	159		672	7.10	1					1	1	ī	1	1
08/06/97	0.39	208	695		758	7.01	1				1	ī	1	1	1	1
11/12/97	0.54	917	9/9		592	6.52				ı	1	ī	1	ı	1	1
02/10/98	0.22	802	839		726	7.05		1		I	ı	1	t	t	i	ī
05/06/98	0.23	782	773		700	7.13 -						i	1	ı	1	1
08/02/98	0.41	838	708		748	6.93	ı	1				1	1	1	1	1
11/10/98	0.25	943	736	3880	742	7.01	ı	1				-	1	1	ı	ı
66/90/90	0.32	799	719		674	7.06	1	ī			í	1	1	1	t	1
11/03/99	0.39	926	487	4220	776	7.02	1	1				1	1	ı	1	1
05/10/00	0.13	901	670	3600	726	7.11					ı	ı	1	1	1	í
11/07/00	0.34	865	689	3860	710	7.26 -	1				1	1		ī	1	í
05/09/01	0.27	199	417	3910	708	7.16	1					1	-	1	1	1
11/14/01	0.51	783	635	3800	710	7.81								ī	I	Ĭ
05/14/02	0.38	878	419	3830	736	7.28				ı		1	1	1	I	1
11/06/02	0.64	996	766	3940	790	681						ı	1	1	1	1
05/21/03	0.64	861	761	3860	824	7.28					ī).	1	1	i	1
11/11/03	0.53	626	683	3640	768	7.03	1					ı	1	1	1	
06/02/04	29'0	1030	662	3830	752	90 9			ı	ı	1	1	Į.	ı	1	
11/09/04	0.47	917	571	3600	776	898	1			1	i	I	i	1	1	1
05/03/05	0.51	878	479	3350	7967	6.98	1		1 4	ı	1	1	1	ľ,	1	1
11/08/05	0.13	826	514	3160	845	7.02	1					1	ī	ĭ	ı	1
90/08/50	1	1	1		,	1	1				1	1	f	ı	1	ī
08/15/06	1	1		i		1	₹	5.86	35.0	1 2	1 2	0.70	1 2	1	1	
11/08/06	<0.05	874	631	3460	962	6.62	\$	<5.00		7		0.50	7 7	9 4	0 4	47.0
02/14/07	1			1	1	7.40	<5	6.65	280	T.	7	200.5	_	9	00	8.00
05/03/07	1		1				1	4			7	no'l		0	€	5.00
08/27/07	1				ì	7.09	\$	979	33.0	1 2	1 7	1	1 3		1	
11/08/07	20.0	850	730	3700	430		45	06.9	33.0 <1		7	3,00		0	<1.00	7.00

	ļ			101 AA-40			
Date	Selen	Selenium (ug/L)	Silver (ug/L)	Thallium (ug/L)	Vanadium (ug/L)	(76)	Zinc (ug/L)
11/06/96	1		1	1	1	1	1
02/07/97	1		1	1	1	11	
05/08/97	i		1	Ţ	i	1	
76/90/80	1		i	1	1	1	
11/12/97	1		1	1	1	1	
02/10/98	ī		ī	1	1	1	
05/06/98	1		1	ı	1		
08/02/98	1		1	1	1	1	
11/10/98	ī		1	1	1	1	
05/06/99	1		1	1	i	1	
11/03/89	1		1	,	Ĭ	1	
05/10/00	1		1	1	1	1	
11/07/00	í		4	1	1	1	
05/09/01	1		1	Ĭ	1	1	
11/14/01	i		1	- 1	1	1	
05/14/02	1		4	1	1	1	
11/06/02	ŀ		1	1	1	1	
05/21/03	Ĩ		1	1	ı	1	
11/11/03	ŧ		1	Ī	i	1	
06/02/04	1		,	1	ı	1	
11/09/04	1		i	I	1	1	
05/03/05	1		1	1	1	1	
11/08/05	1		ı	i	1	1	
90/30/90	1		1	Ĭ	1	1	
08/15/06		11.0	<5	\$	2.	2.00	23.0
11/08/06	\$		<5	\$	-	1,00	24.0
02/14/07		11.0	<5	7	₽	-	32.0
05/03/07	1			ı	ı	1	
08/27/07		10.0	\$	٧	V	H	13.0
11/08/07		5.80	\$	V	250	5	0.90

Angelina County Waste Management Center, Permit No. MSW 2105A, Angelina County, TX - Analytical Data

								MW-20								
- 1	Acetone (ug/L)	Acrylanifnile (ug/L)	Benzene (ug/L)	Bromochloro methane (ug/L)	Bromodichloro methane (ug/L)	Bromoform (ug/L)	Carbon disulide (vg/L)	Carbon tetrachloride (ug/L)	Chlorobenzene (ug/L)	Chloroethane (ug/L)	Chorotom (ug/L)	Dibromochloro methane (ug/L)	1,2-Disromo-3- chloropropune (ug/L)	1,2-Dibromoethane (wg/L)	o-Dichlorobenzene (ug/L)	p-Dichlarobenzene (ug/L)
٧	<20	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<20	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
V	<20	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5,0	<20	<5,0	<5.0	<5.0	<5.0	<5.0	<5.0
v	<20	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<20	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
V	<20	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<20	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
V	<20	410	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5,0	<20	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
05/06/98 <20	50	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<20	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
11/10/98 <20	30	40	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<20	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
05/06/99 <20	50	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	420	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
<20	20	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
05/10/00 <20	50	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
<20	30	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
4 20	30	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
~ 50	20	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
<20	20	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
<20	30	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
<20	20	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5,0	<5.0
11/11/03 <20	20	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<5.0	0'5>	<5.0	<5.0	<5.0
<20	20	<10	<5.0	<5,0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
<20	50	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
05/03/05 <20	0.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
20	02	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
ı		1	ı	1	ſ	1	1	1	1	1	1	1	1	1	1	1
<5	2	<10	<5	<5	<5	<5	5	\$	5	<10	\$	\$	<5	<5	<5	<5
1		i	1	I	1	1		1		1		ī	1	ı	-	ı
4	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0

Angelina County Waste Management Center, Permit No. MSW 2105A, Angelina County, TX - Analytical Data

Date tran	trans-1,4 Dichloro-2- bulene (up/L)	1,1-Dichloroethane (ug/L)	1,2-Dichloroethane (ug/L)	1,1-Dichloroethyfene (Ug/L)	cls-1,2-Dichlora ethylene (ug/L)	trans-1,2-Dichloro ethylene (ug/L)	1,2-Dichieropropane (ug/L)	cis-1,3-Dichiora propene (ug/L)	trans-1,3-Dichloro propene (ug/L)	Ethylbenzene (ug/f.)	2-Hexanone (vg/L)	Methyl bromide (ug/L)	Methyl chloride (ug/L)	Methylene bromide (ug/L)	Methylane chlaride (ug/L)	Methyl ethyl ketona (ug/L)
11/06/96 <5.0	0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	247	7	00	4			
02/07/97 <5.0	0	<5.0	<5.0	<50	45.0	04/	2.5	200	0.0	0.00	AIU.	620	<50	<5.0	<5.0	<20
05/08/97 <5.0		<5.0	047	0.00	000	0.0	0.00	0.6>	<5.0	<5.0	<10	<20	<50	<5.0	<5.0	<20
		0.5	0.00	25.0	€ 0.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<20	<50	<5.0	<5.0	<20
		0.65	0.6>	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<20	<50	/F.D	0.04	000
_	5	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	007	000	000	0.7	250
05/06/98 <5.0	0	<5.0	<5.0	<5.0	<5.0	<5.0	<50	<5.0	- KO	75.0	2	025	200	<0.05	0.6>	<20
11/10/98 <5.0	0	<5.0	<5.0	<5.0	<5.0	75.0	0.50	200	200	0,0	OLS	<20	<50	<5.0	<5.0	<20
05/06/99 <5.0	7	<5.0	-50 U	75.0	000	0.7	25.0	0.0	<5.0	<5.0	<10	<20	<50	<5.0	<5.0	<20
-	-	75.0		0.0	0.0	0.62	<5.0	<5.0	<5.0	<5.0	<10	<20	<50	<5.0	<5.0	<20
05/10/00 <5.0		, C.O.		20.0	c5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<10	<5.0	<5.0	<200
		0.7	0.02	c5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	حر0	<50	<5.0	250
DELONIO 4		20.0		0.6>	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<10	<5.0	/K.O	200
-		<5.U		<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	057	75.0	0 1	020
		<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<50		0.0	VE 0	2	20.0	23.0	<20
05/14/02 <5.0		<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<50	<5.0		2	000	017	20.0	<5.0	<20
11/06/02 <5.0		<5.0	<5.0	<5.0	<50	<50	75.0			1	017	0.0	OLS	<5.0	<5.0	<20
05/21/03 <5.0		<5.0				0.00	25.0				<10	<5.0	<10	<5.0	<5.0	<20
11/11/03 <5.0		<50				0.00	0.0				<10	<5.0	<10	<5.0	<5.0	<20
		78.0				0.62	<5.0		<5.0	<5.0	<10	<5.0	<10	<5.0	<5.0	<20
11/00/04		0.5	Ì			<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0	<10	<5.0	<5.0	200
						<5.0	<5.0	<5.0	<5.0	<5.0	<10			<50	550	200
CONCO.				<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<5.0		75.0		000
0.6> 60/80/11		<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0				1	0.7		420
- 90/06/50		1	-	1	1	ī	1							0.0	CO.0	670
11/08/06 <5		<5	€5	\$	\$	<5								ı		T
- 20/60/50		ı				?			9	•	<10	< 2	<10	₹2	\$	420
11/08/07 <5.0		<50	0	0.						9	1	1	1	ı	1	ī
					0.0	000	2	CEO	047				2000			

Methyl lodide (ug/L)	de (Ug/L) + Metryl-2- pentanone (Ug/L)	L) Shrene (ug/L)	1,1,1,2- Tetrachloroethane (ug/L)	1,1,2,2- Tetrachloroethane (ug/L)	Tetrachloroethylene (ug/L)	Toluene (Ug/L)	1,1,1-Trichlorectnana (ug/L)	1,1,2-Trichloroethane (ug/L)	Trichlomethylene (up/L)	Trichlorofluoromethane (vg/L)	1,2,3-Trichloropropane (ug/L)	Vinyl sociate (ug/L)	Vinyl sociale (ug/L) Vinyl chloride (ug/L)	Total Xylenes (ug/L)
<5.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	25.0	0 97						
<5.0	<10	<50	<5.0	0 2/	0 1/2	000	0.07	0.65	€5,0	<5.0	<5.0	<5.0	<5.0	<10
<5.0	40	250	0.47	0.00	0.07	0.65	C2:0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10
VE.0	27	0.0	20.0	0.6>	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	V5.0	0
2 4	015	0.65	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	200	0.0	017
0.00	0L>	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<50	<5.0	200	200	OL>
0.0	<10	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	45.0	0.97		0.0	0.0	c10
<5.0	<10	<5.0	<5.0	<5.0	<50	<50	75.0	200	0.00	23.0	0.65	<5.0	<5.0	<10
<5.0	<10	<5.0	<5.0	<50	250	25.0	0.00	0.05	<5.0	<5.0	<5.0	<5.0	<5.0	<10
<5.0	<10	<50	<5.0	(FO	0.00	25.0	0.65	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10
<5.0	40	\$50	0.50	0.0	20.0	<5.0 5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<2.0	<10
<5.0 CF.0	4	0.37	2		<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5,0	<5.0	<20	<10
<5.0	2,00	0.50	0.0		<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<20	×10
75.0	2	200	0.00		<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	-50	200	1
45.0	017	65.0	<5.0		<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	200	700
2 0	01/	0.62	0.6>	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<50	C\$ 0	0 47	0.2	017
<0.0°	<10	<5.0	<5.0	<5.0	<5.0	<50	<5.0			200	0.0	0.00	<2.U	<10
<5.0	<10	<5.0	<5.0	<5.0		<5.0	7.50			0,65	<5.0	<5.0	<2.0	<10
<5.0	<10	<5.0	<5.0		250	0.00	000			<5.0	<5.0	<5.0	<2.0	<10
<5.0	<10	<5.0	750		0.5	20.0	0,05		<5.0	<5.0	<5.0	<5.0	<2.0	<10
65.0	27	0.00	200		0.05	<0.0	<5.0	<5.0	<5.0	<5.0	<5.0	<50	00	<10
75.0	2 5	20.0	0.62		<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	220	7
2	014	65.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<50	CE.0	047	200	2.0	2
<5.0	<10	<5.0	<5.0	<5.0	<5.0	<50	650			0.7	0.0	<5.0	<2.0	<10
ì	j	1	1			200			0.0	<5.0	<5.0	<5.0	<2.0	<10
<5	<10	<5	<55		u'					1	1	1	1	1
	1	1				9	9	\$	<5	<5	\$	<5	42	<10
<5.0	<10	<5.0	027	24					1		1	1	1	1
		200	2.0		0.0>	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<\$.0	20	740

MONITOR WELL CONSTRUCTION DETAILS

NOT TO SCALE

1120 NW Stallings Drive Nacogdoches, Texas 75964-3428 (936) 568-9451 Fax: (936) 568-9527 Monitor Well Construction Details Exhibit 8.3.13

Job No. L-01-649

Angelina County Waste Management Center Pennit No. MSW 2105A Angelina County, Texas

Page No. III-5-30AX

Revision No. 0, March 2008

Revision No. 1, February 2010

8.4 Cadmium and Mercury in Groundwater

Well	Date	Parameter	Reported Concentration	MCL	Detection Limit
MW-1	01-94	Mercury	0.0022	0.002	0.0005
MW-5	11-92	Mercury	0.003	0.002	0.001
MW-7	09-92	Mercury	0.005	0.002	0.001
MW-8	04-93	Mercury	0.002	0.002	0.001
MW-14	09-92	Cadmium	0.01	0.01	0.01
	09-92	Mercury	0.002	0.002	0.001
	11-92	Cadmium	0.02	0.01	0.01
	11-92	Mercury	0.002	0.002	0.001
	04-93	Mercury	0.002	0.002	0.001
	01-94	Cadmium	0.023	0.01	0.01
MW-15A	09-92	Cadmium	0.02	0.01	0.01
	11-92	Cadmium	0.02	0.01	0.01
	04-93	Cadmium	0.04	0.01	0.01
	01-94	Cadmium	0.034	0.01	0.01

concentrations in mg/L

8.5 Summary of Detected Cadmium and Mercury in Groundwater

Well	09	-92	11	-92	04	-93	01	-94
weii	Hg	Cd	Hg	Cd	Hg	Cd	Hg	Cd
MW-1							х	
MW-5			х					
MW-7	X						1	
MW-8					=			
MW-14	=	=	é,	×	Εn			X
MW-15A		x		x		X		X

X - reported concentration greater than the MCL; = - reported concentration equal to the MCL

8.6 Range of Standard, Duplicate, & Spike Recovery (%)

Parameter		Monitori	ng Event	
rarameter	09-92	11-92	04-93	01-94
Mercury	100 to 115	84 to 140	91 to 111	100 to 150
Cadmium	94 to 105	94 to 167	100 to 300	97 to 108

* Ranges shown are taken from laboratory QA/QC reports for those samples reported to contain elevated mercury or cadmium.

8.7 Tabulation of Water Level measurements

Angelina County Waste Management Center, Permit No. MSW 2105A, Angelina County, TX - Water Level Elevations (feet, msl)

Monitor																	
Well	02/07/96	08/00/50	00/12/96	11/07/96	02/05/97	05/07/97	76/10/100	11/10/97	02/02/90	11/09/98	05/02/99	11/02/99	02/03/00	11/06/00	05/00/01	11/13/01	05/13/02
MW-1B	269.28	267.58	269.59	269.91	269.54	269,81	209.99	270.00	270.35	269,49	270.96	270,39	271.07	271.46	271.14	271.10	271.26
MW-2	275.24	274.88	274.80	274.70	274.46	274.28	274.32	274.26	274.10	274.10	274.05		1	1	274.09	274.58	274.72
MW.3	268.83	269.04	269.93	269.53	268.87	269.51	270.42	270.04	269.75	269,62	269.82	269,30	268.87	269.26	269.26	269,56	269,66
MW-4	259,65	259.74	258.87	259.04	260.07	261.30	260.80	259.92	261.30	259.61	261.12	259.52	260.66	259.34	261.63	259.67	259,55
MW-5	256.87	257.12	256.22	256.32	256.77	258,22	258.06	257.95	258.50	256.82	258.10	256.54	257.24	256.40	258.34	257,59	258.20
MW-12A	277.06	277.27	277.18	277.24	277.26	277.71	277.73	277.85	278.32	277.98	278.36	277.32	278.45	278.98	278.32	278.12	278.55
MW-13B	270.05	270.52	270.59	271.77	271.13	271.19	271.44	271.54	271.99	271.93	272.83	270.10	272.91	273.28	273.13	269.18	273.29
MW-14	280.51	280.67	280.69		280,65	280,43	280.58	280.90	281.07	280,98	281.27	280,45	280.91	279.49	280,41	280.43	280.45
MW-15A	274.67	275.47	275.53	275.30	275.43	275,22	275.34	275.35	275.65	275.50	275.95	275.17	275.73	274.31	275.37	275,36	275.38
MW-15B	271 03	270.57	270.64	270.61	270.63	- 270.67	270.93	271.00	271.42	271.50	271.98	271.36	272.01	271.38	271.95	272.04	272.13
MW-18	1	ì	1	269.29	269.30	269.44	269,68	269.69	270.02	269,95	270.25	266.05	270.66	271.17	270.73	270,67	270.86
MW-20	1	j	1	266,61	265,37	263.90	265.64	267.36	264.27	267.81	264.97	267,44	264.37	266.96	263.88	267.68	266,92
MW-CA1	1	1	1	1	ı	1	1	1	ĭ	ı	1	1	t	ı	1	1	ī
						,											
Monitor																	
Well	11/05/02	05/20/03	11/10/03	06/01/04	09/07/04	11/06/04	05/02/05	11/07/05	01/03/06	05/31/06	00/14/00	11/07/06	02/14/07	05/02/07	08/27/07	11/107/107	
MW-1B	271.59	271.55	271.49	271.98	272.06	271.81	272,00	272.03	272,38	272.27	272.38	272.33	272.36	272.65	272.52	272.20	
MW-2	274.97	274.59	275,15		276.14	274,89	276,44	1	1	ì	Į		1	1	1	1	
DATAL-3	270.21	28982	269.59	270.49	271.03	270.22	270.08	269.30	268.77	268,68	269.32	268.97	267.83	258.64	269.86	269.08	
DAWA.4	760 23	259.71	259 15	260.24	260.29	260.09	260.70	258.78	258.60	258.90	258.25	258.47	259.52	250,10	259.67	259.10	
DATAL S	257.57	258 14	76.737	258.60	258.83	258.27	259.66	256,92	256.87	256.95	256.20	.256.42	257.14	257.97	258.06	257.44	
ACT-IVIM	278 57	278 R7	27B 50	279.60	279.57	279.08	279.56	278.59	278.57	278.23	277.97	277.96	278.74	279.11	279.21	278.63	
MAN-13R	273 4R	273.5D	273 41	274.31	274.38	273.99	274.45	274.50	274.80	274.51	274.48	274.69	274.38	274.98	275.04	275.03	
MANA-14	280.69	280.35	280.25	280.76	280.78	280.45	280.65	260.91	281.31	281.04	281.09	281.16	281.11	281.29	281.10	280.68	
NAW-15A	275.71	275.51	274 38	275.91	275.78	274.98	275.68	275.78	278.25	275.97	275.97	275.98	275,96	276.22	276.01	275.54	
MW-15B	272.58	272.45	272.38	272.90	272.59	272.61	272.88	273.04	273.49	273.27	273.31	273.37	273.39	273.64	273.51	273.14	
MW-18	271.28	271.16	271.14	271.58	271.74	271.30	271.57	271.70	272.18	272.01	272.02	272.08	272.07	272.45	272.34	271.92	
MW-20	269.02	268.80	268.92		269.10	268.61	268,48	267.70	266.95	263.81	266,48	267.07	264.71	264.71	266.24	268.64	
han land		j			971 45	27434	974 63	27173	272.15	272.03	271.99	272.20	272.00	272.48	272.35	272.14	

8.8 Demonstration of Interconnectivity Between Wells MW-1B and MW-18

As described in the *Initial Groundwater Characterization Report* (Attachment 9.1), the uppermost groundwater bearing zone is made up of a number of hydraulically connected channel sands incised by other channel sands. Interbedded silty sand and clay units flanking the channel sands lessen hydraulic connectivity between water bearing units in both vertical and lateral directions. Although the interbedded silty sand and clay units limit flow between the sand bodies, distinct evidence of interconnectivity remains. Water levels in monitor wells installed in close proximity, such as wells MW-1B and MW-18, demonstrate the interconnectivity of vertically separated channel sands. Comparisons of historical water level data for monitor wells MW-1B and MW-18 show pronounced correlation between changes in water levels during successive events since 1999.

In order to demonstrate the interconnectivity of monitor wells MW-1B and MW-18 an evaluation of water levels was performed. Regression analysis of water levels from monitor wells MW-1B and MW-18 produced a correlation coefficient (r-squared value) of 0.9849. Based on their limited separation, the calculated r-squared value indicates excellent interconnectivity between the two wells. Additionally, the change in water level for successive monitoring events for each well was calculated. Regression analysis of the resulting values for wells MW-1B and MW-18 yielded an r-squared value of 0.9370 with a geometric mean of 0.0992 feet, further demonstrating the interconnectivity of the two closely spaced wells. The following graph illustrates the correlation of the water level measurements.

Additionally, parallels with respect to analytical data further indicate the wells monitor the same zone. The following graphs illustrate the correlation of analytical results from multiple sampling events.

Both the water level and analytical data demonstrate the interconnected nature of these two monitor wells. As the wells monitor the same groundwater bearing unit and are approximately 11 feet apart only one well is necessary to monitor this portion of the point of compliance. Therefore, monitor well MW-1A will be plugged and abandoned and monitor MW-18 will remain part of the point of compliance monitoring system. Data used for this demonstration are included in Exhibits 8.1 and 8.7.

INITIAL GROUND-WATER CHARACTERIZATION REPORT

ANGELINA COUNTY WASTE MANAGEMENT CENTER PERMIT NO. MSW 2105

ANGELINA COUNTY, TEXAS Job No. L-03-70

Report For:

Mr. James Mays, Manager

Prepared by

Hydrex Environmental, Inc. Nacogdoches, Texas

INITIAL GROUND-WATER CHARACTERIZATION REPORT

ANGELINA COUNTY WASTE MANAGEMENT CENTER

Report For:

Mr. James Mays, Manager
Angelina County Waste Management Center
Lufkin (Angelina County), Texas
Permit No. MSW 2105

December 1, 1995

John M. Wilson Geologist	 	
Glen A. Collier, C.P.G. Hydrogeologist		

Prepared by: Hydrex Environmental, Inc. 117 North Street, Suite 8 Nacogdoches, Texas 75961 (409) 568-9451 FAX (409) 568-9527

TABLE OF CONTENTS

INTRODUCTION	
PREVIOUS WORK	
REGIONAL GEOLOGY and HYDROGEOLOGY	
Wilcox Group	
Carrizo Sand	
Reklaw Formation	
Queen City Sand	
Weches Formation	
Sparta Sand	
Cook Mountain Formation	10
Yegua Formation	10
Jackson Group	11
SITE STRATIGRAPHY	15
Organic-Rich Clays and Silts	1/
Silty Sands and Clayey Sands	
SITE HYDROGEOLOGY	15
WATER LEVEL MEASUREMENTS	19
RECENT FIELD ACTIVITIES	22
Soil Borings	22
The Excavation	25
Photo #1	30
Photo #2	32
Photo #3	34
DISCUSSION	35
RECOMMENDATIONS	38

TABLE OF CONTENTS (continued)

REFERENCES , ,	******								
LIMITATIONS	********								
TABLES									
Table 1	Summary	of Monitor Well Information 4							
Table 2		Aquifers and Corresponding Stratigraphic Units							
Table 3A	Historical Feb	Water Level Measurements oruary 1993 - January 1994 20							
Table 3B		Water Level Measurements rch 1994 - November 1995 21							
Table 4		of Recommended Ground- ter Monitoring System							
APPENDICES									
Appendix I	Plates								
	Plate I	Geologic Map							
	Plate II	Site Map of Angelina County Waste Management Center							
	Plate III	Ground-Water Elevation Map - Shallow Zones							
	Plate IV	Ground-Water Elevation Map - Deep Zones							

TABLE OF CONTENTS (continued)

Plate V Comparison of Water Levels in Deep

and Shallow Zones

Plate VI Proposed Monitoring System

Plate VII Locations of all Borings and Monitor Wells

Plate VIII Geologic Cross Section A-A'

Plate IX Geologic Cross Section B-B'

Plate X Water Levels Relative to Screened Interval

and Ground Surface Elevation

Appendix II Logs of Borings and Monitor Wells

INTRODUCTION

Hydrex Environmental, Inc. was contracted to conduct an initial ground-water characterization study at the Angelina County Waste Management Center (ACWMC) Landfill, Permit No. MSW 2105, Angelina County, Texas. The work was authorized by Mr. James Mays, Manager of ACWMC.

The purpose of the investigation was to more completely describe ground-water conditions of the uppermost aquifer at the site. Data was obtained from numerous prior geological and hydrogeological studies and from recent field investigative activities which included a limited soil boring program.

PREVIOUS WORK

In July 1987, Pickett-Jacobs Consultants, Inc. initiated a geotechnical investigation to determine subsurface materials and ground-water conditions at the site. The investigation was implemented in four stages, the initial stage consisted of 13 soil borings (B-1 through B-13) drilled during the period from July 6, 1987 to August 25, 1987. The second stage of borings (B-14 through B-20) was conducted on May 3 and 4, 1988. Borings for the third phase of exploration (B-21 through B-30) were drilled during the period from June 2 through 13, 1988, and Boring Nos. B-31 through B-34 were drilled on November 22 and 23, 1988. The borings ranged in depth from 25 to 50 feet

PREVIOUS WORK (continued)

below ground surface. Lithologies encountered consisted of silty sand, clayey sand, lean clay, fat clay and minor amounts of lignite.

A supplement to the initial soil investigation was conducted on April 18, 19, 26, and 27, 1989 in accordance with Texas Department of Health requirements to verify soil conditions. The purpose of this investigation was to extend 10 soil borings and determine subsurface materials and ground-water conditions within these areas. Boring Nos. B-6, B-23, B-27, and B-28 were extended to a depth of 30 feet below ground surface, while boring Nos. B-19, B-22, B-25, B-30, B-31, and B-34 were extended to 50 feet below ground surface.

Eleven piezometers were installed on April 26 and 27, 1989 by Pickett-Jacobs Consultants, Inc. The piezometers were constructed using 2 inch I.D., glue jointed PVC, with a five foot 0.010 factory slotted screen and were installed at the location of previous soil borings. The piezometers were designated PZ-2, PZ-6, PZ-14, PZ-16, PZ-19A, PZ-19B, PZ-22, PZ-27, PZ-30, PZ-31, and PZ-33, in accordance with locations of nearby borings. The depths of the piezometers ranged from 11 feet (PZ-19A) to 32 feet below ground surface (PZ-14). Water levels in the piezometers were measured and depths ranging from 3 feet (PZ-19A) to 25 feet below ground surface (PZ-14).

PREVIOUS WORK (continued)

16) to 18 feet below ground surface in PZ-22 and PZ-33 were recorded. All piezometers were subsequently plugged and abandoned.

Nineteen monitor wells (MW-1 through MW-15B) were installed at the site during the time period of November 12 through 27, 1991. Well Nos. MW-16 and MW-17 were installed March 31 and April 1, 1995, as replacements for dry monitor wells MW-10B and MW-11B. The wells were targeted at water-bearing strata revealed by previous geotechnical investigations and piezometer installations. All monitor wells were constructed using four inch I.D., schedule 40, threaded PVC. Well screens were constructed using 0.010 inch factory slotted PVC well screen. Depths of the monitor wells ranged from 16 feet below ground surface (271.6 feet msl., MW-2) to 81 feet below ground surface (238.5 feet msl., MW-1A). Development of the monitor wells took place from December 12 through 20, 1991. Water levels were measured quarterly from February 1993 to February 1995. Historical water-level data are presented as Tables 3A and 3B.

The locations of all borings, piezometers, and monitor wells are presented on the boring location map included as Plate VII of this report. Relevant data on

PREVIOUS WORK (continued)

each monitor well is presented in Table 1.

Table 1
Summary of Monitor Well Information

(all measurements in feet; elevations referenced to MSL)

Ground Number Surface			Bottom of Well		Scree	ened Interval	Static Water Level	
(Valide)	Elev	Casing Elev	Depth	Elev.	Depth	Elev.	Depth	Elev.
MW-1A	319.5	320.64	36	283,50	15-35	304.5-284.5	Dry	
MW-1B	319.5	320.51	81	238.50	60-80	259.5-239.5	51.35	208.15
MW-2	287.6	288.99	16	271.60	5-15	282,6-272.6	13.46	269.14
MW-3	277.0	277.78	33	244.00	12-32	265-245	7.32	257.68
MW-4	269.7	270.66	31	238.70	10-30	259.7-239.7	11.23	248.47
MW-5	275.5	276.35	33	242.50	12-32	263.5-243.5	19.53	243.97
MW-6	268.8	269.50	27	241.80	16-26	252.8-242.8	13.05	239.75
MW-7	262.2	263.37	26	236.20	10-25	252,2-237.2	13.03	239.17
MW-8	262.2	263.15	48	214.20	32-47	230.2-215.2	10.79	219.41
MW-9	267.2	268.26	46	221.20	25-45	242.2-222.2	13.35	228.85
MW-10	272,9	273.42	35	237.90	19-34	253.9-238.9	8.65	245.25
MW-11	272.5	274.48	21	251.50	10-20	262.5-252.5	7.97	254.53
MW-12A	290,5	290,38	26	264.50	10-25	280.5-265.5	21.48	259.02
MW-12B	290.5	290.72	50	240.50	34-49	265.5-250.5	13.11	252.39
MW-13A	304.1	*307.39	22	282.10	6-21	298.1-283.1	dry	
MW-13B	304.1	*308.29	47	257.10	26-46	278.1-258.1	38.42	239.68
MW-14	307.3	*310.75	33	274.30	17-32	290.3-275.3	30.22	260.08
MW-15A	310.5	*313.28	64	246.50	48-63	262.5-247.5	37.96	224.54
MW-15B	310.5	*312.55	42	268.50	26-41	284.5-269.5	42.36	242.14
MW-16	270.3	270.69	47	223.30	36-46	234.3-224.3	10.97	223.33
MW-17	281.0	281.32	49	232.00	38-48	243-233	22.03	220.97

^{*} Casings and protective covers were raised in accordance with TAC § 330.242

REGIONAL GEOLOGY AND HYDROGEOLOGY

The Angelina County Waste Management Center, located in south-central Angelina County, is situated southwest of the Sabine Uplift in the East Texas Basin. Cenozoic sedimentary deposits which accumulated in the East Texas Basin reflect transgressive and regressive episodes resulting from a combination of fluctuating eustatic sea levels and subsidence induced by high rates of sediment influx. Depositional environments range from fluvial, deltaic, marginal marine, and marine in the outcrop area to primarily marine in the downdip section.

The stratigraphy of Angelina County, as it relates to the occurrence of fresh ground water, consists of the Wilcox Group (undifferentiated), Claiborne Group, Cook Mountain Formation, Yegua Formation, and the lower portion of the Jackson Group (Plate I). In East Texas, the Claiborne Group is comprised of (in ascending order): the Carrizo Sand, Reklaw Formation, Queen City Sand, Weches Formation, and the Sparta Sand. Rocks of the Midway Group, which underlie the Wilcox, form the lower boundary for fresh ground water occurrence throughout East Texas. Ages of these units range from Paleocene (Midway Group) to Oligocene (Whitsett Formation of the Jackson Group).

The Carrizo Sand, which forms the base of the Claiborne Group, and sands of the underlying Wilcox Group are the most productive water-bearing units in East Texas. Together they host the only major regional aquifer (Carrizo-Wilcox Aquifer) as defined by the Texas Water Development Board (TWDB). The Queen City Sand and the Sparta Sand host minor aquifers (Preston, 1991). The Yegua Formation provides a less productive, but important, source of fresh ground water in the area of study. Table 2 summarizes the aquifers and their respective host units along with their water-bearing properties.

Wilcox Group

Formations within the Wilcox Group are: the Calvert Bluff Formation, Simsboro Formation, and Hooper Formation (Kaiser et. al., 1978). Individual formations in the Wilcox are not distinguishable in Angelina County. The Wilcox Group consists of fluvial-deltaic deposits of sand, silt, clay and lignite.

Typical Wilcox sand consists of about 75% quartz and 20% rock fragments, and 5% feldspar. Most of the feldspar is orthoclase with lesser amounts of plagioclase. Glauconite and carbonate rock clasts may be locally abundant. Only about 3% of the framework grains are of igneous and metamorphic origin.

These sands show evidence of minor diagenesis reflected by the presence of micritic and sparry calcite cements. In some areas, the sand grains are cemented by clay rims (Dutton, 1979).

Sand bodies are generally elongate in a downdip direction and lenticular in cross section, reflecting a channel belt origin. Along the margins of the sand body, net sand content decreases as interfingering finer sediments become dominant. In southern Angelina County, the Wilcox is more than 3,300 feet thick.

Carrizo Sand

The Carrizo Sand consists of approximately 100 feet of moderately- to well-sorted, fine- to medium-grained sands which are fluvial to deltaic in origin (Ayers et al, 1985). At the surface, the Carrizo is often red in color due to staining by iron oxide. Surface exposures often exhibit internal cross-stratification. These sands, in combination with sands of the upper Wilcox, comprise the Carrizo-Wilcox Aquifer. In East Texas, sands of the upper Wilcox and the Carrizo are in hydraulic communication and are considered to be one aquifer system (Preston, 1991). At the subject site, the top of the Carrizo is at an elevation of

approximately 1600 feet below MSL.

Reklaw Formation

The thickness of the Reklaw Formation averages slightly over 200 feet. The upper portion of the Reklaw Formation is composed primarily of clay while the lower portion often consists of a silty, glauconitic, fine-grained quartz sand (Guyton & Associates, 1970). For ground-water production, the underlying Carrizo is usually favored over the basal Reklaw sands because of greater production capability and better water quality.

Queen City Sand

The Queen City Sand was deposited as a terrigenous clastic wedge of interbedded sand and shale. Angelina County lies east of the major sand depocenters which mark the axis of the sand dispersal system. The depocenters, characterized by lobate sand bodies of deltaic origin, are found in Cherokee and Anderson counties. The Queen City Aquifer is composed of alternating beds of very fine- to fine-grained quartz sand and clay. No sands are present southeast of a line trending northeast-southwest through Lufkin, Texas. In southern Angelina County, the Queen City consists of clays which are

indistinguishable from the clays of the overlying Weches Formation and the underlying Reklaw Formation (Guyton & Associates, 1970). The thickness of the Queen City ranges from approximately 200 feet in northeastern Texas to 2500 feet in south Texas (Guevara & Garcia, 1972). Only a small number of water wells are completed in the Queen City in Angelina and Nacogdoches counties. Westward, in Cherokee County, the Queen City becomes a more prolific water-bearing formation due to an increase in net sand thickness and a widespread recharge area.

Weches Formation

The Weches consists of marine clays and silts with beds of fossiliferous limestone and fine-grained sands. The thickness of the Weches averages approximately 90 feet. The Weches is essentially nonwater-bearing and functions as a leaky aquitard between the Queen City and the Sparta Sand.

Sparta Sand

Terrigenous clastics of the Sparta Sand lie unconformably upon the Weches Formation. The Sparta, which reaches a maximum thickness of about 200 to 300 feet, consists primarily of very fine- to medium-grained quartz sand and clay

(Fogg & Kreitler, 1982). Thin beds and seams of lignite may be locally abundant. The formation typically fines upward from a gravel or coarse sand base. Iron-oxide staining produces a red color in outcrop localities. The Sparta Formation hosts the Sparta Aquifer, a minor but important aquifer in the East Texas region (Fogg & Kreitler, 1982).

Cook Mountain Formation

The Cook Mountain Formation outcrops in a three to seven mile wide band extending across southern Nacogdoches County and northern Angelina County. The formation consists primarily of silt and clay with occasional thin beds of sand, sandy clay, and marly clay (Guyton & Associates, 1970). The Cook Mountain is insignificant as a water-bearing unit, but serves as an effective aquitard separating the Sparta and the Yegua.

Yegua Formation

The Yegua outcrops in the southeastern tip of Nacogdoches County and across central Angelina County. The formation is composed of thin beds of sand, silt, and clay with minor amounts of lignite. The sandy zones of the Yegua

Formation are generally found in the lower portion while the upper portion contains higher percentages of clay and silt. Although not classified as an aquifer host unit by the TWDB, the Yegua provides fresh water to numerous wells in the area. Yegua sands are composed predominantly of very fine- to fine-grained quartz sand. Sand bodies are generally discontinuous and are not correlative over large distances (Guyton & Associates, 1970).

Jackson Group

The Jackson Group outcrops approximately four to five miles south of the subject site. In southern Angelina County, the Jackson is represented by (in ascending order): the Caddell Formation, Wellborn Formation, Manning Formation, and Whitsett Formation. None of these units are significant producers of ground water. The role of the Jackson Group is to form an overlying confining layer for the Yegua Formation (Jackson, 1982).

Table 2
Aquifers and Corresponding Stratigraphic Units

STRATIGRAPHIC UNIT	AQUIFER NAME	RANGE IN THICKNESS (feet)	THICKNESS AT LUFKIN (feet)	WATER-BEARING PROPERTIES Yields small to moderate quantities of fresh to brackish water.		
Yegua	***	0-1050	150-400			
Sparta Sparta Sand (minor aquifer)		0-290 200		Yields small to moderate quantities of fresh water.		
Queen City Sand Queen City (minor aquifer)		0-130	50	Yields small to moderate quantities of fresh water, mostlin outcrop area.		
Carrizo Sand Carrizo- Wilcox		0-170	120	Yields moderate to		
Wilcox Group	(major aquifer)	**	950-3,300	large quantities of fresh water.		

^{* -} not considered an aquifer but has local importance

(Information obtained from Guyton & Associates, 1970)

SITE STRATIGRAPHY

The Eocene Yegua Formation outcrops at the Angelina County Waste Management Center and extends at least to the terminal depth of all borings at the site (Plate I). The Yegua is composed predominantly of silt and clay with

^{** -} not determined

SITE STRATIGRAPHY (continued)

interbeds or channels of sand. Sand content typically increases toward the base of the formation. A review of previous investigations conducted by the Texas Water Development Board indicates the Yegua is approximately 400 feet thick at the ACWMC.

Site stratigraphy of the Yegua Formation is characterized by organic rich silts and clays which are dissected by channel sand bodies, lobes, and sheets. These sands thin marginally to laminations, lenses, and streaks. As is common in deltaic environments, avulsion of the sediment supplying distributary channels controlled the location of the sand bodies within the formation. In areas marginal to the distributary channels, the lower energy marshes and swamps allowed for the accumulation of organic material and muds, forming the gray clays, silts and lignite beds found throughout the Yegua.

As the deltas prograded seaward, delta lobe sand bodies were deposited along the delta front, forming thick sand wedges and sheets. These sands were commonly reworked by wave action and deposited near-shore, forming the marine barrier islands or barrier bars.

SITE STRATIGRAPHY (continued)

Specific lithologies encountered during subsurface investigations consist of a surficial veneer of silty sand (SM) underlain by deposits of mostly organic rich fat clay (OH), lean clay (OL), and clayey sand (SC). The greatest thickness of silty sand (22 feet) noted in drilling activities for piezometers, monitor wells, and all geotechnical investigations, occurred in the boring of monitor well MW-9. The thickest section of clayey sand intersected was 25 feet in boring B-25. Most clayey sand intercepts do not exceed 10 feet. The maximum thickness of lean clay encountered while drilling was 24 feet (B-19). Clay and silt deposits are typically less 10 feet thick, but range up to 24 feet thick (B-23). In general, the near surface stratigraphy of the site can be characterized as a series of channel sands or sand lobes and associated organic rich deltaic silts, clays and lignite beds.

Organic Rich Clays and Silts

The organic rich clays (OH, OL) and silts are the most common lithologic group at the site. Deposits are mostly gray to dark-gray and, to a lesser extent, tan or brown in color. The gray or dark-gray color is a result of the organic-rich nature of the sediments and their close proximity to lignite beds. Varying amounts of sand are present either within the clays and silts or as thin interbeds up to

SITE STRATIGRAPHY (continued)

several inches thick.

Silty Sands and Clayey Sands

Silty sand and clayey sand are the second most abundant lithologic group at the site. These sands were deposited by distributary channels of the major tributaries. Most of the sands are of a channel-fill, sheet, or delta lobe nature. Within the excavation in Tract 1, widespread trough crossbedding can be seen throughout the sands directly overlying the locally confining lignitic clay. One occurrence of marine sand with thin laminations of shell fragments was also noted in the eastern end of the excavation. The thicker sands at the site are the major host units for ground water.

SITE HYDROGEOLOGY

The occurrence of fresh ground water in the Yegua is largely determined by the distribution of sand bodies and by the complexity of associated clay and silt facies. Sporadically distributed sand bodies host most of the ground water in the area and provide the primary paths for its movement.

The uppermost aquifer at the site consists of two water-bearing zones with

varying degrees of hydraulic communication between the two zones. These water-bearing units are characterized by locally continuous sand bodies bounded by finer grained silt and clay facies. The thickness of the sand bodies typically does not exceed 10 feet. Marginal to the primary silty sand and clayey sand bodies, lithologies are dominated by interbedded silty sand and clay. These thin sand interbeds are the conduit for communication between the primary sands. This premise is supported by the observation that monitor wells which are completed in interbedded silty sand and clay bodies located marginal to the primary sands (MW-10), have similar water level elevations as those completed in the primary sand bodies (MW-11). Similarly, monitor wells completed in sands which are vertically separated have similar water levels, such as monitor wells MW-7 and MW-8. As a result of the channel-fill nature of the sands, the possibility exists that the individual channels are in contact where meandering channels were deposited on, or incised into older deposits.

Within the uppermost aquifer, deeper bodies of silty sand and clayey sand are often under confined conditions where overlain by silts and clays forming a local confining unit (MW-8). Conditions are mostly unconfined in the upper portion

of the aquifer. The maximum thickness of the uppermost water-bearing system, based upon the highest ground surface elevation of approximately 320 feet (MSL) and the lowest elevation of the top of the lower confining bed 215 feet (MSL), is estimated at approximately 105 feet.

The lower confining bed of the uppermost aquifer is a hard gray clay with few sand seams. The stratum appears to be continuous across the site. This aquitard underlies the silty sand and clayey sand of the deeper, locally confined zones. This stratum was intersected in borings B-20, B-29, B-30, B-31, and B-34, neither the thickness nor the lateral extent of this unit was revealed by these borings. The top of the lower confining bed occurs between approximately 215 and 225 feet MSL. Laboratory tests conducted on samples from this unit yielded Liquid Limits (LL) ranging from 58 to 62 and Plastic Limits (PL) from 19 to 23. Plasticity Indices were from 30 to 39.

At the site, flow in the shallow zones of the uppermost aquifer is to the north-northeast except at the southwestern end of the site where the flow direction is to the southwest (Plate III). Ground-water contour maps indicate a ground-water divide located along a line between monitor wells MW-14 and MW-2. The

position of the ground-water divide appears to be controlled by the southwest dip of a local lower confining unit and by subsequent thickening of the overlying water-bearing sands (Plates VIII - IX). On the flanks of this divide, the potentiometric surface within these sands increases in depth. Consequently, monitor wells MW-1A and MW-13A were completed a depths insufficient to intercept the shallow water-bearing sands. A ground-water contour map produced for the deeper zones indicates that the flow direction is also to the northeast (Plate IV).

Two water wells drilled at the site provide information about stratigraphy and ground water beyond the terminal depths of the soil borings. The first well, completed in February 1975 by English Drilling Co., was drilled to a total depth of 348 feet. Well screens were placed from 215-235 feet, 302-307 feet, and 314-319 feet below ground surface. The second well, drilled in August 1994 by Reed Environmental Drilling, was drilled to a depth of 280 feet below the surface. The well screen was set from 218-278 feet below ground surface. Driller's logs for the wells are presented in Appendix II. Both wells were completed in sands of the lower Yegua and conditions are confined. The various screen settings in the water wells and monitor wells reflect the

stratigraphic complexity of the site.

WATER LEVEL MEASUREMENTS

Water level elevations in all monitor wells were recorded quarterly from February 1993 to February 1995. Additional water level readings were taken November 7, 1995 to obtain recent data. A summary of all water level measurements is presented as Tables 3A and 3B.

WATER LEVEL MEASUREMENTS (continued)

Table 3A Water Level Measurements February 1993 - January 1994

WELL	02	02-93		04-93		09-93		01-94	
WELL	Depth	Elev.	Depth	Elev.	Depth	Elev.	Depth	Elev.	
MW-1A	Dry	13-07	Dry	1	Dry		Dry	_	
MW-1B	52.52	267.99	55.50	265.01	52.30	268.21	52.50	268.01	
MW-2	12.86	276.13	12.75	276.24	12.79	276.20	12.52	276.49	
MW-3	7.87	269.91	7.50	270.28	6.57	271.21	7.50	270.28	
MW-4	10.21	260.45	9.10	261.56	10.66	260.00	10,25	260.41	
MW-5	18,32	258.03	18.13	258.22	18.66	257.69	18.50	257.85	
MW-6	12.06	257.44	11.60	257.90	12.14	257.36	12.00	257.50	
MW-7	10.88	252.49	12.00	251.37	12.89	250,48	12.50	250.87	
MW-8	12.37	250.78	9.25	253.90	11.00	252.15	8.75	254.40	
MW-9	11.92	256.34	11.00	257.26	13.02	255.24	12.50	255.76	
MW-10	7.05	266.37	10.10	263,32	7.01	266.41	8.25	265.17	
MW-11	7.24	267.24	7.80	266.68	6.92	267.56	9,00	265.48	
MW-12A	11.49	278.89	12.55	277.83	11.29	279.09	12.00	278.38	
MW-12B	21.05	269,67	21.25	269.47	21.05	269.67	21.75	268.97	
MW-13A	Dry	-	Dry		21.00	284.31	Dry	=	
MW-13B	39.23	266.60	40.10	265.73	37.85	267.98	38.00	267.83	
MW-14	26.25	281.89	27.00	281.14	26.55	281.59	28.00	280.14	
MW-15A	35.25	275.79	35.50	275.54	35.45	275.59	36.00	275.04	
MW-15B	41.34	269.69	46.05	264.98	41.14	269,89	Dry	-	
MW-16	8.82	261.87	11.25	259.44	10.78	259.91	9.00	261.69	
MW-17	21.43	259.89	21.20	260.12	21.33	259.99	22.00	259.32	

All water level measurements in feet; measured from TOC

WATER LEVEL MEASUREMENTS (continued)

Table 3B Water Level Measurements March 1994 - November 1995

WELL	- 03	03-94		10-94		:-95	11-95	
WELL	Depth	Elev.	Depth	Elev.	Depth	Elev.	Depth	Elev.
MW-1A	Dry	-	Dry		Dry		Dry	14
MW-1B	51.57	268.94	51.38	269.13	50.97	269,54	51.35	269.16
MW-2	12.90	276.09	12.98	276.01	12.58	276.41	13.46	275.53
E-WM	7.84	269.94	7.00	270.78	7.30	270,48	7.32	270.46
MW-4	10.26	260.40	11.25	259.41	10.00	260.66	11.23	259.43
MW-5	18.48	257.87	19.26	257.09	18,36	257.99	19.53	256.82
MW-6	12.10	257.40	12.89	256.61	12,01	257.49	13.05	256.45
MW-7	12.54	250.80	12.87	250,50	14.18	249.19	13.03	250.34
MW-8	9.49	253,66	11.29	251.86	9.37	253.78	10.79	252.36
MW-9	11.88	256.38	13.62	254.64	12.16	256.10	13.35	254.91
MW-10	7.57	265.85	8.37	265,05	7.65	265.77	8.65	264.77
MW-11	7.40	267.08	7.77	266.71	7.15	267.33	7.97	266.51
MW-12A	11.80	278.58	12.55	277.83	12.43	277.95	21.48	277.61
MW-12B	21.32	269.00	21.47	269.25	21.31	269.41	13.11	268.90
MW-13A	Dry	k	24.82	282.57	Dry	34.4	Dry	
MW-13B	37.15	271.14	39.30	268.99	38.72	269.57	38.42	269.87
MW-14	26.27	284.48	29.71	281.04	29.45	281.30	30.22	280.53
MW-15A	34.89	278.39	32.49	280.79	37.30	275.98	37.96	275.32
MW-15B	40.58	271.97	42.47	270.08	42.04	270.51	42.36	270.19
MW-16	10.42	260.27	11,38	259.31	10.52	260.17	10.97	259.72
MW-17	21.69	259.63	21.90	259.42	21.19	260.13	22.03	259.29

All water level measurements in feet; measured from TOC

RECENT FIELD ACTIVITIES

Recently, seven soil borings (B-35 through B-41) were placed at various locations at the site. These borings were conducted in order to further evaluate ground-water conditions within the uppermost aquifer, especially in areas where replacement or new monitor wells were to be installed. As a supplement to the soil borings, a stratigraphic study was conducted along the northern wall of the current excavation.

Soil Borings

All soil borings were conducted via the use of a Geoprobe model 5400 Hydraulic/Percussion Soil Sampler. Samples were collected both in 1,25 inch and 2 inch sample tube. The locations of all borings are presented on Plate VII. Boring B-35 was placed roughly in the center of the current area of excavation at a surface elevation of approximately 276 feet msl. The boring revealed a section of moist to saturated clayey sand to a depth of 8 feet. This sand was underlain by a local lower confining layer of lignitic clay to the terminal depth of 12 feet below ground surface. The local lower confining unit served as a marker bed for other borings in this vicinity. Sands encountered in boring B-35 were saturated from 3 to 8 feet below ground surface.

The second boring, B-36, was placed at the western edge of the excavated area at a surface elevation of approximately 276 feet msl. Samples from this soil boring revealed that the clayey sand was not present in this location. Instead, the lithology consisted of thinly interbedded organic silts and clays to the terminal depth of 12 feet below ground surface. The boring was dry upon completion.

Soil boring B-37 was located approximately 500 feet north of the northern edge of the current excavation. The surface elevation was estimated to be approximately 290 feet msl. The lithology consisted of clayey sand and interbedded silty sand from the surface to a depth of 18 feet. Organic clay was found from 18 feet to the terminal depth of 28 feet below ground surface. A sixinch thick bed of hard, dark brown lignite was encountered at a depth of 19.0 to 19.5 feet. Sands from 12 to 18 feet below ground surface were fully saturated.

Boring B-38 was located approximately 100 feet north of the water tank along the west side of the Southland Energy Pipeline. Ground surface elevation was estimated to be 285 feet msl. The stratigraphy of B-38 consisted dry clayey sand and silty sand from the surface to 14 feet. This sand was underlain by 6

feet of dry, organic fat clay from 14 to 20 feet. A one-foot seam of crumbly, dark brown lignite was intercepted at 20 to 21 feet. The lignite was underlain by silty organic clay to the terminal depth of 23 feet below ground surface. The boring was dry upon completion.

Boring B-39 was placed adjacent to monitor well MW-9 at a surface elevation of 267 feet msl. Lithologies encountered were silty sand from to a depth of 3 feet, interbedded fat clay and clayey sand from 3 to 20 feet and saturated silty sand from 20 feet below surface to the terminal depth of 30 feet. Saturated conditions were encountered from 15 feet below ground surface to the terminal depth.

Three borings were placed along the pipeline separating Tracts 1 and 2. The first boring (B-38) did not encounter ground water. The final two borings focused on determining if shallow water-bearing sediments were present along the common tract boundary. Boring B-40 was located approximately 400 feet south of the northern permit boundary, along the pipeline, and at an approximate ground elevation of 280 feet msl. The stratigraphy consisted of silty sand from the surface to 10 feet, interbedded silty sand and clayey sand

from 10 to 18 feet, and silty organic clay from 18 feet to the terminal depth of 22 feet below ground surface. Saturated strata were noted at a depth of 10 to 18 feet. The final boring (B-41) was located along the pipeline approximately 600 feet north of monitor wells MW-12A and MW-12B. A single intercept of moist clayey sand was encountered from the surface to a depth of 8 feet. Slightly moist, very dense to very stiff, dark gray, interbedded organic rich silts and clays extended from 8 feet to the terminal depth of 40 feet. The boring was dry upon completion.

The Excavation

An excavation for cell construction in the center of Tract 1 has created a window thorough which a view of the shallow subsurface can be seen. The stratigraphy exposed within this excavation is believed to be a representative sample of the shallow stratigraphy elsewhere at the site. Attention was focused on the relationship between the local confining layers of organic clays and silts and the overlying or adjacent primary sand bodies. As a result of these field activities the determination was made that the water-bearing strata at the site are more laterally continuous than previously reported.

Within the northern portion of the excavation, a bed of dark gray, lignitic clay occurs along the base of the cut face. The thickness of the lignitic clay could not be determined from the outcrop. The unit is overlain by a section of trough cross-bedded slightly clayey sand. This sand is the host unit for the shallow ground water in this area and has a variable thickness of 5 to 7 feet. The lignitic clay functions as the lower confining bed for the shallow, water-bearing sand. Both the lignitic clay and trough cross-bedded clayey sand can be traced along entire northern cut face of the excavation, a distance of approximately 1000 feet from east to west. Thinly laminated very clayey sand overlies the trough crossbedded clayey sand. This unit commonly exhibits scour and fill sedimentary structures and ranges from approximately 3 to 8 feet thick. The very clayey sand grades laterally into a massive silty sand at the western end of the excavation. A 5 to 10 foot thick section of interbedded silty sand and clay overlies the unit of very clayey sand. The uppermost unit exposed within the excavation is an approximate 5 foot thick surficial veneer of dry silty sand. The continuity of these strata is depicted in the photographs of the outcrops exposed within the northern part of the excavation in Tract 1.

Photo #1 is a view of the western half of the north cut face. The excavation has

RECENT FIELD ACTIVITIES (continued)

extended into the local lower confining unit of the shallow water-bearing sand which is exposed as the dark brown (saturated) unit at the base of the section. The continuity of these strata is also evident in this view. The length of the section from the right side of the photo to the left (east to west), is approximately 600 feet.

Photo #2 is a view of the eastern portion of the trench. In this area the trough cross-bedded silty sand or slightly clayey sand which hosts the shallow ground water is well exposed. The trough cross-bedded sedimentary structures are a result of the fluvial-deltaic origin of these sand bodies. The lower confining layer of lignitic clay is exposed at the base of the sand. Surficial yellow staining depicted in the lower right hand portion of the photograph probably results from weathering of sulfide minerals within the lignitic clay. The exposed lower confining layer at this location is approximately 1.5 feet thick. Adjacent to the area depicted in this photograph, ground water seeps occur along the top of this relatively impermeable layer.

The location of Photo #3 is in the north-central portion of the current excavation.

Depicted in the photo is the trough cross-bedded clayey sand overlain by a

RECENT FIELD ACTIVITIES (continued)

distinct scour and fill structure of very clayey sand. The 36-inch diameter culvert provides a scale for the photo. The scour and fill structure is overlain by approximately 8 feet of interbedded silty sand and clay. A surficial veneer of silty sand overlies the interbedded silty sand and clay unit. The variety of fluvial processes responsible for deposition of the lithologic units at the site is evident in this photograph.

Photo # 1 Western End of Trench

Photo # 1 Western End of Trench

Photo # 2 East End of trench

Photo #2 East End of Trench

Photo #3 Center of trench

Photo #3 Center of Trench

DISCUSSION

Currently, the site ground-water monitoring system consists of 21 monitor wells. Monitor wells MW-1B, MW-8, MW-12B, MW-13B, MW-15A, MW-16 and MW-17 are completed in the deeper zones of the uppermost aquifer. Monitor well MW-9 screens both water-bearing zones. The remainder of the monitor wells are completed in the shallow zone of the uppermost aquifer (Plate X). Monitor wells MW-1A and MW-13A which are completed at shallow depths have historically been dry. All of the deeper monitor wells are either accompanied by a shallow well or are in close proximity to a monitor well completed in the shallow zone. Deeper monitor wells at the site are completed at depths too great to effectively detect a release of contaminants to the ground water.

The approximate elevation of the base of current excavation in the central part of Tract 1,(276 feet msl), is roughly equal to the elevation of the screened interval in monitor wells MW-2 and MW-12A. The silty sand or clayey sand exposed on the northern end of the current excavation is believed to equate to the screened interval of these wells. Within the excavation, the exposure of water-bearing sand is approximately 1000 feet long from east to west.

A geologic cross section (Plate VIII) indicates that the local lower confining layer of lignitic clay deepens to the south and southwest along a line roughly between

monitor wells MW-2 and MW-14. Subsequently, the overlying sands which act as the host for groundwater in this area, also deepen to the southwest. The result is a northwest-southeast trending ridge on the top of the local lower confining layer of lignitic clay. The ridge produces a ground-water divide between monitor wells MW-2 and MW-14. Generally, ground water flows down the flanks of this divide to the northeast and southwest. The ground-water elevation map for the shallow zone indicates a trough located in the vicinity of monitor well MW-13B (Plate III). With the exception of this trough, ground-water flow direction appears to be consistent to the northeast on the northeast side of the ground-water divide.

Recharge to the uppermost aquifer most likely occurs at the outcrop of the various sand bodies either at the site or in close proximity. Additional recharge to the shallow water-bearing zones of the uppermost aquifer may occur where hydraulic communication with the deeper (confined) zones exists. Factors which determine the interconnectedness of the shallow and deeper (confined) water-bearing zones include the degree of interbedding of sand and clay between the primary sand bodies and the amount of lateral and vertical separation.

Hydraulic communication between the two water-bearing zones varies across

DISCUSSION (continued)

the site. Water level measurements in adjacent monitor wells MW-15A and MW-15B and monitor wells MW-7 and MW-8 indicate that water levels in the deeper (confined) zones are higher than those in the shallow zone (Plate V). At these locations, the deeper (confined) zone is under higher piezometric pressure and possibly recharges the shallow zone of the uppermost aquifer where the two are in hydraulic communication. An upward flow is indicated at these locations. Water levels in monitor wells MW-12A and MW-12B indicate a downward flow direction between the two zones in this portion of the facility.

Ground-water flow direction is generally in two directions at the subject site. The direction of flow is determined by the location of a ground-water divide which trends between monitor wells MW-14 and MW-2. Ground water flows in a northeasterly direction on the northeast side of the ground-water divide, and in a southwesterly direction on the southwest side of the ground-water divide. The exception is the trough indicated in the vicinity of monitor well MW-13B.

Plate X presents ground water levels relative to the screened interval and ground surface elevation for each well.

RECOMMENDATIONS

The following recommendations are submitted as a result of this initial groundwater characterization study:

- Plug and abandon monitor wells MW-1A and MW-13A which are consistently dry and serve no purpose.
- Plug and abandon monitor wells MW-8, MW-12B, MW-15A, MW-16 and MW-17, which are screened too deep to effectively detect a release.
 - Plug and abandon monitor well MW-9, which screens both the shallow and deep zones.
 - 4) Install a replacement monitor well, MW-18, at the location of monitor well MW-1A. MW-18 should be screened at approximately 280 to 270 feet msl.
- 5) Replacement monitor well, MW-19, at the location of monitor well MW-9. MW-19 should be screened at approximately 257 to 247 feet msl. Install prior to opening of Tract 2.
- Pipeline approximately 400 feet south of the northern permit boundary. This line separates Tracts 1 and 2. This well, located in the site interior, will provide interim downgradient monitoring for Tract 1.

RECOMMENDATIONS (continued)

- 7) Warehouse monitor wells MW-5, MW-6, MW-7, MW-19, MW-10, and MW-11, which monitor the perimeter of Tract 2. Monitor only wells around Tract 1 until construction and waste filling activities have begun in Tract 2. Warehoused wells should be purged at least annually to ensure that the well screens remain open.
- 8) Perform aquifer tests on all replacement or new monitor wells and selected existing wells to accurately determine hydraulic properties of the water-bearing strata.
- 9) Submit final ground-water characterization report.

The recommended ground-water monitoring system is shown on Plate VI and summarized on Table 4.

RECOMMENDATIONS (continued)

Table 4
Summary of Recommended Ground-Water Monitoring System

Well	Aquifer	Status	Remarks
MW-1A	Interbedded Sand-clay	Existing	Plug & Abandon
MW-1B	Interbedded Sand-clay	Existing	Downgradient well
MW-2	Silty Sand	Existing	Downgradient well
MW-3	Clayey Sand -Lean Clay	Existing	Downgradient well
MW-4	Clayey Sand	Existing	Downgradient well
MW-5	Clayey Sand, Clay-Sand	Existing	Warehouse - Downgradient well
MW-6	Interbedded Clay-Sand	Existing	Warehouse - Downgradient well
MW-7	Interbedded Clay-Sand	Existing	Warehouse - Downgradient well
MW-8	Interbedded Clay-Sand	Existing	Plug & Abandon
MW-9	Silty Sand	Existing	Plug & Abandon
MW-10	Interbedded Clay-Sand	Existing	Warehouse - Downgradient well
MW-11	Silty Sand - Clayey Sand	Existing	Warehouse - Downgradient well
MW-12A	Interbedded Clay-Sand	Existing	Downgradient well
MW-12B	Fine Sand (SP)	Existing	Plug & Abandon
MW-13A	Clayey Sand	Existing	Plug & Abandon
MW-13B	Interbedded Clay-Sand	Existing	Downgradient well
MW-14	Clayey Sand	Existing	Upgradient well
MW-15A	Silty Sand-Lean Clay	Existing	Plug & Abandon
MW-15B	Clayey Sand	Existing	Downgradient well
MW-16	Interbedded Clay-Sand	Existing	Plug & Abandon
MW-17	Clayey Sand	Existing	Plug & Abandon
MW-18	Silty Sand - Clayey Sand	To be drilled	Replacement for MW-1A
MW-19	Interbedded Clay-Sand	To be drilled upon opening of Tract 2	Replacement for MW-9 Downgradient
MW-20	Silty Sand	To be drilled	New Well Between Tracts 1&2 Downgradient well

REFERENCES

- Dutton, S.P., 1979, Petrography and diagenesis of Wilcox sandstones: University of Texas at Austin, Bureau of Economic Geology Geological Circular 80-12, 5 pp.
- Fogg, Graham E. and Kreitler, Charles W., 1982, Ground-water hydraulics and hydrochemical facies in Eocene aquifers of the East Texas basin: University of Texas at Austin, Bureau of Economic Geology Report of Investigations No. 127, 75 pp.
- Fogg, Graham E., Kaiser, W.R., Ambrose, M.L., and MacPherson, G.L., 1983, Regional aquifer characterization for deep-basin lignite mining, Sabine uplift area, northeast Texas: University of Texas at Austin, Bureau of Economic Geology Geologic Circular 83-3, 30 pp.
- Guevara E.H. and Garcia, R., 1972, Depositional systems and oil-gas reservoirs in the Queen City Formation (Eocene), Texas: University of Texas at Austin, Bureau of Economic Geology, 22 pp.
- Guyton, W.F. and Associates, 1970, Ground-water conditions in Angelina and Nacogdoches Counties, Texas: Texas Water Development Board Report 110, 167 pp.
- Jackson, Mary L.W. and Garner, L.E., 1982, Environmental geology of the Yegua-Jackson lignite belt, southeast Texas: University of Texas at Austin, Bureau of Economic Geology Report of Investigations No. 129, 36 pp.
- Kaiser, W.R., and others, 1986, Geology and ground-water hydrology of deepbasin lignite in the Wilcox Group of East Texas: University of Texas at Austin, Bureau of Economic Geology Report, 182 pp.
- Preston, Richard D., 1991, Evaluation of ground-water resources in the vicinity of the cities of Henderson, Jacksonville, Kilgore, Lufkin, Nacogdoches, Rusk, and Tyler in East Texas: Texas Water Development Board Report 327, 51 pp.

LIMITATIONS

The investigation reported herein is considered sufficient in detail and scope to form a reasonable basis for the conclusions presented in this report. However, because of limitations in the number, spacing, and depth of wells, piezometers, and exploratory borings, geological and hydrogeological conditions may not have been fully revealed by this investigation. It is conceivable that subsurface conditions may be encountered which differ from those presented in this report. Our observations and conclusions presented herein are based upon conditions which existed at time of the specified field activities. Our professional services have been performed and our findings presented in accordance with generally accepted geological and hydrogeological principles and practices. These warranties are in lieu of other warranties either expressed or implied.

APPENDIX I

APPENDIX II SOIL BORING AND MONITOR WELL LOGS

PROJECT: Angelina County Landfill

Lufkin, Texas

JOB NO.: 164-87

DATE: 7-6-87

LOCATION: See Boring Plan TYPEBORING/SAMPLING: Dry Auger

F		S	ET.	121 121	DEPTH TO WATER:						
оертн (FT.)	SYMBOL SAMPLES	SAMPLES	STANDAR PENETROME (BLOWS/F1	HAND PENETROME (TONS/FT	STRATUM DESCRIPTION GROUND ELEV. 299.4	ATTER	BERG LI	MITS (9			
				1.0	Firm light brown silty fine sand (SM) (wet)		T.	n			
10 <				4+4+4+	Dense tan and gray clayey sand (SC) with silty clay seams and layers -becomes light gray and tan -with layers of sandy clay	51	17	34			
15 <				4+	Hard gray and brown clay with (CH) numerous seams and laminations of clayey sand	62	17	45			
20<				4+	Hard gray and brown sandy clay (CL) with seams of light gray and tan clayey sand -becomes hard dark gray sandy clay with seams of silty sand and						
30 <					Boring Terminated @ 25.0' NOTE: Boring was dry upon completion. Dry and caved @ 24' on 7-8-87. Water @ 18' and caved @ 19' on 8-7-87.						

PROJECT: Angelina County Landfill Lufkin, Texas

JOB NO .: 164-87

DATE: 7-6-87

Rotary Wash/ LOCATION: See Boring Plan TYPE BORING/SAMPLING: Dry Auger

12-20-89 STANDARD PENETROMETER (BLOWS/FT.) DEPTH TO WATER HAND PENETROMETE (TONS/FT²) DEPTH (FT. STRATUM DESCRIPTION TTERBERG LIMITS (%) GROUND ELEV. 310.1 Loose brown silty fine sand (SM) 2.0' 0.5 Firm gray and reddish-brown very 4+ 37 16 21 clayey sand with sandy clay seams 2.5 -becomes gray and brown 4.5 40 18 22 3.5 -becomes tan and gray 10.0' Firm light brown slightly clayey 3.0 3.0 -becomes very clayey sand with sandy 20 clay layers 22.0' 2.5 Firm tan and gray very clayey 18 25 sand with seams of sandy clay and silty sand 2.5 -becomes gray and tan 30 31.0' Hard dark gray and tan sandy clay (CL) with seams and laminations of silty 4+ sand and clayey sand 47 16 31 (Continued on Page 71

PROJECT: Angelina County Landfill Lufkin, Texas

JOB NO.: 164-87

DATE: 7-6-87

Rotary Wash/ 12-20-89 LOCATION. See Boring Plan -

ВЕРТИ (FT.) ВҮМВОЦ	LES	DARD DMETER 5/FT.)	ND SMETER /FT ²)	DEPTH TO WATER:			
	SAMPLES	STANDARD PENETROMETE (BLOWS/FT.)	HAND PENETROMETI (TONS/FT ²)	STRATUM DESCRIPTION GROUND ELEV. 310.1	ATTERI	ERG LDA	(ITS (S
				37.0'			
0 -	.		3.0	Firm dark gray very clayey sand (SC) with sandy clay layers			
5			3.0	45.0'			
				Hard dark gray clay with silt (CH) and sand seams			
. 1/			4+	50.0'	62	21	4
				NOTE: Seepage @ 26' while drilling. Water @ 39' and caved @ 41' upon completion. Water @ 20' and caved @ 33' on 7-8-87. Water @ 30' and caved @ 33' on 8-7-87.		7	

PROJECT: Angelina County Landfill

Lufkin, Texas

JOB NO.: 164-87

DATE: 8-25-87

LOCATION: See Boring Plan TYPE BORING/SAMPLING: Dry Auger

Rotary Wash/ 12-20-89

- T.	E 5	5	ARD METER /FT.)	ETER	DEPTH TO WATER:			
DEPT11 (FT.)	SYMBOL	SAMPLES	STANDARD PENETROMETE (BLOWS/FT.)	HAND PENETROMETE (TONS/FT ²)	STRATUM DESCRIPTION GROUND ELEV. 304.6	ATTERE	ERG LDA	ITS (
		X	14 17		Firm light brown silty fine sand (SM)			
5 -				3.5 4.5	Firm gray and tan clayey sand (SC) with seams of sandy clay	45	23	22
0 -				3.0		40	19	2.
5		•		4.0	16.0'			
0 -				4.0	Very stiff gray and brown clay with seams and laminations of clayey sand (CH)	73	17	5
5				2.5		64	18	4
				3.5	32.0'			
				4.5	Hard gray sandy clay with sand (CL) seams (Continued on Page 2)			

Angelina County Landfill Lufkin, Texas PROJECT:

JOB NO.: 164-87

PATE: 8-25-87

2		TER T.)	TER	DEPTH TO WATER:			
DEPTH (FT.)	SAMPLES	STANDARD FENETROMETI (BLOWS/FT.)	HAND PENETROMETE (TONS/FT ²)	STRATUM DESCRIPTION		BERG LIM	IITS (5
			Δ.	GROUND ELEV. 304.6	Ц	?L	Pt
			3.0	Very stiff gray and brown sandy (CL) clay with seams and laminations of fine sand			
			3.5	45.0'			
			4+	Hard dark gray clay with sand (CH) seams			
				Boring Terminated @ 50.0'	63	21	4:
		Ŧ.		NOTE: Boring was dry upon completion. Dry and caved @ 45.0' on 8-26-87.		7 .	

PROJECT: Angelina County Landfill Lufkin, Texas

JOB NO.: 164-87

DATE: 8-25-87

DEPTH (FT.) SYMBOL		RD	FT.) ETER	DEPTH TO WATER:			
	SAMPLES	STANDA	(BLOWS/FT HAND FENETROME	STRATUM DESCRIPTION GROUND ELEV. 312.6	ATTER	BERG LIS	urs (
		20		Firm light brown silty fine sand (SM)			
5 - //			3.9	Firm gray and tan clayey sand (SC) with pockets and laminations	28	21.	
0 -			1.0	-becomes gray clayey sand with seams and laminations of sandy clay			
5 -			3.5	-becomes firm gray clayey sand with seams and laminations of sand	29	22	
0			3.0				
			3.0	-becomes gray and brown 25.0'	38	20	18
0 -				NOTE: Seepage @ 7.5' while drilling. Water @ 13' and caved @ 19' on 8-26-87.			

PROJECT: Angelina County Landfill Lufkin, Texas

JOB NO.: 164-87

Rotary Wash/ 12-20-89

LOCATION: See Boring Plan

DEPTH (FT.) SYMBOL SAMPLES	RD ETER FT.)	ETER	DEPTH TO WATER:					
	SAMPLE	STANDARD PENETROMETE (BLOWS/FT.)	HAND PENETROMETS (TONS/FT ²)	STRATUM DESCRIPTION GROUND ELEV. 315.7	ATTER	BERG LE	MITS (
				0.5	Loose light brown silty fine sand (SM)			H
				0.5	4.0'			
				4.5	Dense gray and reddish-brown very (SC) clayey sand -becomes gray and tan very clayey sand with roots	37	16	2.
0 -				4+	-with seams of sandy clay	47	16	3:
				1.5	Firm gray and tan clayey sand (SC) (dry)			
		,		1.5	-becomes moist		r	
				1.5		36	17	19
				1.5	Dense gray slightly clayey sand (SC) with layers of brown sandy clay			

PROJECT: Angelina County Landfill

Lufkin, Texas

JOB NO.: 164-87

Rotary Wash/ 12-20-89

SYMBOL	ES	ARD METER /FT.)	ETER OF T	DEPTH TO WATER:						
	SAMPL.ES	STANDARD PENETROMET (BLOWS/FT.)	HAND PENETROME (TONS/FT	STRATUM DESCRIPTION GROUND ELEV. 315.7	ATTER	IERG LO	शाउ (
				37.0'						
	* #		4.5	Dense light brown silty fine sand (SM) with clayey sand layers -becomes gray silty fine sand with occasional seams of silty clay 45.0'						
	•		4+	Hard dark gray clay with silty (CH) sand layers and lignite	36	18	1			
				NOTE: Seepage @ 37' while drilling. Water @ 27' and caved @ 28' upon completion. Water @ 18' and caved @ 23' on 7-8-87. Caved @ surface on 8-7-87.						

PROJECT: Angelina County Landfill Lufkin, Texas

JOB NO .: 164-87

DATE: 7-7-87

LOCATION: See Boring Plan TYPE BORING/EAMPLING: Dry Auger

Wash/ 12-20-89

1.		s	RD ETER	ETER T2)	DEPTH TO WATER:			
ОЕРТН (FT.)	SYMBOL	SAMPLES	STANDARD PENETROMETS (BLOWS/FT.)	HAND PENETROMETE (TONS/FT ²)	STRATUM DESCRIPTION GROUND ELEV. 316.0			NIL2
			jeno.	1.0		ш	PL	
				0.5	4.0' Soft gray and tan very sandy clay (CL)			-
5 -				2.5 2.5 4+	Firm gray and tan very clayey (SC) sand with seams of very sandy clay (wet)	40	17	2
					12.0'			
; -				4+	Dense tan and gray slightly (SC) clayey sand	. 33	16	1
				4+	Dense tan and gray clayey sand (SC)	36	15	2
				4+	-becomes gray and tan clayey sand with seams of silty sand and sandy clay		7	
				1.5	30.0'	30	19	1
					Hard dark gray clay with sand (CH) pockets and layers	61	19	4:
	4	+		4+ 3	Boring Terminated at 35.0' NOIE: Boring was dry upon completion on Dry and caved @ 25.0' on 7-8-87.			

PROJECT: Angelina County Landfill Lufkin, Texas

11

JOB NO.: 164-87

LOCATION: See Boring Plan Type BORING

DATE: 7-7-87 / 12-20-89 Rotary Wash/

FT.)	4	LES	ARD METER /FT.)	ETER	DEPTH TO WATER:				
DEPTIL (FT.)	BYMBOL	SAMPLE	STANDARD PENETROMET (BLOWS/FT.	HAND FENETROME (TONS/FT	STRATUM DESCRIPTION GROUND ELEV. 315.7			ATTERBERG LIM	
				1.0	Loose brown silty fine sand	(SM)			
		 		3.0	Firm gray and tan clayey sand 4.0' with sandy clay layer	(SC)			F
				4+ 4+ 4+	Dense tan and gray clayey sand with layers of silty sand	(SC)	43	18	25
<u>'</u>					11.0'				
		•		3.0	Firm gray clayey sand with silty sand layers	(SC)	35	15	20
				3.5	Very stiff tan and gray very sandy clay	(CL)			
	4	-			22.0'				
				4.0	Hard gray and tan clay with layers of very clayey sand	(CH)	53	18	3.5
				4+	-with organic matter				
				4+	Hard gray very sandy clay with numerous laminations of silt and fine sand	(CL)			

PROJECT: Angelina County Landfill Lufkin, Texas

JOB NO.: 164-87

See Boring Plan

Rotary Wash/ 12-20-89

- L	ES	AETER FT.)	LETER FT ²)	DEPTH TO WATER:				
DEPTH (FT.)	SAMPLES	STANDARD PENETROMETER (BLOWS/FT.)	(BLOWS/FT.) HAND PENETROMETE (TONS/FT ²)	STRATUM DESCRIPTION GROUND ELEV. 315.7		ATTERBERG LIMIT		
				37.0'				
0	.,		4+	Dense gray very clayey sand with (SC) seams of silt and fine sand				
5 -			4+	Hard gray very sandy clay (CL)				
			4+	50.0'	47	22	2	
				NOTE: Seepage @ 21' while drilling. Water @ 42.5' and caved @ 46' on 7-8-87. Water @ 39' and caved @ 42' on 8-7-87. (116.7)				

PROJECT: Angelina County Landfill Lufkin, Texas

JOB NO.: 164-87

DATE: 7-6-87

LOCATION: See Boring Plan TYPE BORING/SAMPLING: Dry Auger

2			D TER	TER	DEPTH TO WATER:			
DEPTIJ (FT.)	SYMBOL	SAMPLES	STANDARD PENETROMETI (BLOWS/FT.)	HAND PENETROME (TONS/FT	STRATUM DESCRIPTION GROUND ELEV. 304.1	ATTER	BERG LO	HITS (
		٠		1.5			12	
					4.0'	Non	Pla	sti
5				4+	Dense gray and tan clayey sand (SC) with layers of sandy clay and 6.0' silty sand			
				4+	Hard gray and tan clay with (CH) 8.0' layers of silty sand and clayey sand	60	18	42
0 -		*		4+	Dense gray and tan clayey sand (SC) with layers of silty sand			
5				4+	Dense gray clayey sand with silty (SC) sand layers	46	15	31
0 -				4+	Dense gray and tan very clayey (SC) sand with sandy clay seams			
]				4+	Hard dark gray clay with seams (CH) of clayey sand and silt 25.0'	51	r 17	34
					NOTE: Boring was dry upon completion. Boring was dry and caved @ 24' on 7-8-87. Water @ 3.5' and caved @ 6' on 8-7-87.			

PROJECT: Angelina County Landfill Lufkin, Texas

JOB NO.: 164-87

DATE: 8-25-87

(FT.)	or.	ES	ANDARD TROMETER OWS/FT.)	ID METER FT ²)	DEPTH TO WATER:			
БЕРТН (FT.)	SYMBOL	SAMPLES	STANDARD PENETROMETER [BLOWS/FT.]	PENETROMETE (TONS/FT ²)	STRATUM DESCRIPTION GROUND ELEV. 302.1	ATTER	PL PL) ETI
		X	11		Firm light brown sitly fine sand (SM)			
5 -				3.0 4+ 4.0	Very stiff gray and brown clay (CH) with seams and layers of sand	62	18	4.4
15				4.5		91	20	7.
20-		*		3.5		73	19	5
2.5				4.0	25.0'		7	
30 <					Boring Terminated 25.0' NOTE: Boring was dry upon completion: Dry and caved @ 25.0' on 8-26-87.			

PROJECT: Angelina County Landfill Lufkin, Texas

JOB NO.1 164-87

DATE: 8-24-87

LOCATION See Boring Plan

SAMPLES	T STANDARD T O PENETROMET	HAND HAND TO C C C C C C C C C C C C C C C C C C C	STRATUM DESCRIPTION GROUND ELEV. 313.6 Firm light brown silty fine sand (SM) 4.0' Dense gray and red very clayey (SC) sand with seams and laminations of clay and sand	ATTER IL	n.	2 3
X		4.5	Firm light brown silty fine sand (SM) 4.0' Dense gray and red very clayey (SC) sand with seams and laminations	40	17	2 3
\$ 3 \$ 6 \$ 7		4.5	sand with seams and laminations	40	17	2:
		4.5				
			-becomes gray and brown	43	19	2
X	33	Ř.	-			
		4+				
		4+	26.0'	38	16	2:
•		4+	Hard brown and gray sandy clay with(CL) seams and laminations of sand			
		4+				
		33	4+	4+ 26.0' Hard brown and gray sandy clay with(CL) seams and laminations of sand	4+ 26.0' Hard brown and gray sandy clay with(CL) seams and laminations of sand 4+	4+ 26.0' Hard brown and gray sandy clay with(CL) seams and laminations of sand 4+

PROJECT:

Angelina County Landfill

Lufkin, Texas

JOB NO.: 164-87

DATE: 8-24-87

BEPTH (FT.) SYMBOL	AMPLES	STANDARD NETROMETER (BLOWS/FT.)	OMETER S/FT ²)	depth to water:			
SYM SYM	BAM	STANDARD PENETROMET (BLOWS/FT.	HAND FENETROME (TONS/FT	STRATUM DESCRIPTION GROUND ELEV. 313.6	ATTERI	erg Ld	UTS (5
0			4+	Hard gray and brown sandy clay (CL) with seams and laminations of fine sand			
			4+	45.0'			
				NOTE: Boring was dry upon completion. Dry and caved @ 45.0' on 8-25-87. Dry and caved @ 43.5' on 8-26-87.		7	

PROJECT: Angelina County Landfill Lufkin, Texas

1.1

11

JOB NO.: 164-87

DATE: 7-24-87

(FT.)	9,	.ES	ARD METER /FT.)	ID METER FT ²)	DEPTH TO WATER:	EPTH TO WATER:								
DEPTH (FT.)	SYMBOL	SAMPLES	STANDARD PENETROMETER (BLOW8/FT.)	HAND PENETROMETE (TONS/FT ²)	STRATUM DESCRIPTION GROUND ELEV. 309.6	ATTER	BERG LD	II EII						
	T	X	12		Firm brown silty fine sand (SM)									
5 -				3.0	Firm tan slightly clayey sand (SC)									
				4+	Dense gray and tan very clayey (SC) sand	43	18	25						
10					12.0'									
				1.5	Stiff tan and gray sandy clay (CL)									
15		۰			Firm tan and gray clayey sand (SC)	40	24	1						
20-				2.0	150	39	25	1						
					24.0'		1							
25 -				1.0	Firm gray silty fine sand (SM)									
				2.5	28.0'									
10 -				1.5	Firm gray and tan clayey sand (SC)	35	23	1.						
35-		,		1.5	Continued on Deep 21									

PROJECT: Angelina County Landfill Lufkin, Texas

11

164-87 1.0N BOL

DATE: 7-24-87

2		TER C	ETER	DEPTH TO WATER:			
SYMBOL	SAMPLES	STANDARD PENETROMETI [BLOWS/FT.]	HAND PENETROME (TONS/FT				בחו
0			4.0	Dense gray and tan clayey sand (SC)	ц	M.	
				Boring Terminated @ 40.0'		•	
5				NOTE: Boring was dry upon completion. Water @ 38' and caved @ 38.5' on 8-7-87.	ų.	,	
						L	

PROJECT:

Angelina County Landfill Lufkin, Texas

JOB NO.: 164-87

DATE: 8-24-87

1.1	,	3	RD ETER FT.)	ETER T2)	DEPTH TO WATER:				
DEPTIL (FT.)	SYMBOL	SAMPLES	STANDARD PENETROMETER [BLOWS/FT.]	HAND PENETROMETS (TONS/FT ²)	STRATUM DESCRIPTION GROUND ELEV. 314.0	ATTERBERG LD		HITS (7	
		X	11		Firm light brown silty fine sand (SM) 2.0'	11			
		X	10		4.0' Firm gray and tan clayey sand (SC)	23	17	6	
5 -				4+	Dense gray and tan clayey sand (SC) with seams and laminations of sand	34	12	22	
0 -				4+		×			
5		X	50+		-becomes very dense	40	16	24	
0 -		X	52			33	24		
5 -		X	44		25.0' -with clay seams		1		
0 -					NOTE: Boring was dry upon completion. Dry and caved @ 25' on 8-25-87. Dry and caved @ 24.5' on 8-26-87.				

PROJECT: Angelina County Landfill Lufkin, Texas

JOS NO.: 164-87

DATE: 8-25-87

LOCATION: See Boring Plan TYPE BORING/SAMPLING: Dry Auger

-			C FER	TEN -	DEPTH TO WATER:				
DEPTIL (FT.)	SYMBOL	SAMPLES	PENETROMET (BLOWS/FT.	HAND PENETROMET (TONS/FT	STRATUM DESCRIPTION GROUND ELEV. 303.9	ATTER.	ATTERNERG LIMITS (
		X	31		Dense tan silty fine sand (SM)				
				4+	Hard gray and red sandy clay (CL)	32	13	19	
5 -			_	3.5 4+	Dense gray clayey sand with sand (SC) seams and clay pockets	37	14	23	
0 -			٠	3.5	-becomes gray and tan clayey sand with seams and laminations of sand		-		
5 ~				3.5		38	14	24	
) V					-becomes gray and tan	45	18	27	
5 -		X	33		25.0'	,	1		
0 <					Boring Terminated @ 25.0' NOTE: Boring was dry upon completion. Dry and caved @ 25' on 8-26-87.				

PROJECT: Angelina County Landfill (1987)
Angelina County, Texas

L1

JOB NO.: 164-87 DATE: 5-4-88

LOCATION: See Attached Plantype Boring/SAMPLING: Dry Auger

(FT.)	SYMBOL SAMPLES	.ES	STANDARD PENETROMETER (BLOWS/FT.)	4D METER	DEPTH TO WATER:				
ОЕРТН (FT.)	SYMB	SAMPI	STAND PENETRO (BLOWS	HAND FENETROMETE (TONS/FT ²)	STRATUM DESCRIPTION GROUND ELEV. 286.1			ATTERBERG LID	
					1.0' Loose silty sand	(SM)			
5 -				3.0	Firm tan very clayey sand with sand seams	(sc)	35	14	2:
10 -					Firm tan clayey sand with sand seams	(SĆ)	34	23	1
15 ~				4.5+	Hard brown clay with silt seams	(CH)	75	23	5
20 <			,	4.5+	23.0				
2.5 <				4.5+		(CH)	63	27	1
10 ~				4.5+	32.0'				
35~					Dense gray sand 35.0'	(SP)			

PROJECT: Angelina County Landfill (1987)

Angelina County, Texas

JOB NO.: 164-87

DATE: 5-3-88

FT.)	'n	ES	ARD Weter (FT.)	D WETER FT ²)	EPTH TO WATER:				
оеети (FT.)	SYMBOL	SAMPLES	STANDARD PENETROMET (BLOWS/FT.	HAND FENETROMETI (TONS/FT ²)	STRATUM DESCRI	PTION	ATTERI LL	PL PL	III3 (7
			a.	4	Loose tan silty sand	(SM)		12	
5 -				4.5+	Very dense gray and tan clayey sand	(SC)	.22	19	
0 4				4.5+	- becomes very clayey wo	ith	68	17	5
5 -				4.5+	5.0'		57	20	3
0 ~				4.5+	Hard tan and brown sandy with sand seams	clay (CL)	43	22	2
5 4					Dense gray and tan silty	sand (SM)			
10 -					Boring Terminated @ 25.0' Note: Seepage at 24.0' du Water @ 21'9" and o on 5-11-88.				

Angelina County Landfill (1987)
Angelina County, Texas

JOB NO.: 164-87

DATE: 5-4-88

			D TER	TER Z)	tached Plan Type Boring/Sampling: Dry Auger			-
DEPTH (FT.)	SYMBOL	SAMPI.ES	STANDARD PENETROMETER (BLOWS/FT.)	PENETROMETI	STRATUM DESCRIPTION GROUND ELEV. 271.1		RBERG L	י צדואט
					1.0 Loose tan silty sand	ш	P.L.	11
		. 57 %.		3.5 4.0	Firm tan very clayey sand with sand seams (SC) - becomes tan and gray and dense	46	19	2:
2 - I				1.	Dense tan silty sand (SM)			
				4.5-	Hard gray clay with silt seams (CH)	58	21	37
				.5+	5.0'	·		
					Boring Terminated @ 25.0' Note: Seepage @ 13.0' during drilling. Water @ 3'6" and open to 19.0' on 5-11-88. Water @ 4' and caved @ 16' on 8-1-88. No seepage in test pit exca- vated to 11' on 8-1-88.	61	21	40

PROJECT: Angelina County Landfill (1987) Angelina County, Texas

JOB NO.: 164-87

DATE: 5-3-88

LOCATION: See Attached Plan TYPE BORING/SAMPLING: Dry Auger

Ē.	١.	£3	(ETER	AETER	DEPTH TO WATER:			
DEPTH (FT.)	Dawie	SAMPLES	STANDARD PENETROMETER (BLOWS/FT.)	PENETROMETE	STRATUM DESCRIPTION GROUND ELEV. 287.1		DERG LU	-
						П	n.	21
	1			-	2.0, Loose gray silty sand (SM)			
	1			4.5+	Hard tan clay with silt seams (CH)	99	23	7.
	1					·		
				4.5+	- becomes gray and tan	91	27	6
				4.5+	- with sand seams	77	19	5
				4.5+	18.0'			
			70		Dense gray clayey sand (SC)	33	24	9
					Dense tan and brown clayey sand (SC)			
=					Boring terminated @ 25.0'			
					Note: Dry upon completion and dry and open to 22.0' on 5-11-88.			

PROJECT: Angelina County Landfill (1987)
Angelina County, Texas

. 1

11

11

JOB NO.: 164-87

DATE: 5-4-88

-			TER TER	DEPTH TO WATER:			
БЕРТН (FT.)	SYMBOL	SAMPLES	STANDARD PENETROMETER (BLOWS/FT.) HAND PENETROMETER	STRATUM DESCRIPTION GROUND ELEV. 286.8	ATTER LL	BERG LD	SI (2
				Loose brown silty sand (SM)			
5			4.5-	with silt seams (CH)	91	28	63
10-			4.5-	13.0'	80	28	52
15			4.5+	Hard gray clay with sand seams (CH)	77	27	50
20-			4.5+	23.0'		1	
25 -			4.5+		48	17	31
				28.0 Dense gray silty sand (SM)			
10			4.5+		44	20	24
35		,	4.5+	35.0'			
		1		(Continued on Page 2)			

PROJECT: Angelina County Landfill (1987) Angelina County, Texas

11

1...

1.

1.

JOB NO.: 164-87 DATE: 5-4-88

		Œ,	ER	DEPTH TO WATER:		_	
DEPTH (FT.) SYMBOL	SAMPLES	STANDARD PENETROMETER (BLOWS/FT.)	HAND PENETROMETER (TONS/FT ²)	- STRATUM DESCRIPTION GROUND ELEV. 286.8	ATTER	BERG LIM	ins c
0-			3.0	Dense gray silty sand with sandy clay layers (SM)			
				Note: Seepage at 28.0' during drilling. Water @ 12.0' and open to 18.0' on 5-11-88.			

Angelina County Landfill (1987) Angelina County, Texas PROJECT:

JOE NO.: 164-87

5-3-88 4-26-89

Rotary Wash/

(FT.)	'nc	ES	ARD METER /FT.)	D WETER FT ²)	DEPTH TO WATER:		21-8	
оертн (FT.)	SYMBOL	SAMPI.ES	STANDARD PENETROMETER (BLOWS/FT.)	HAND FENETROMETE (TONS/FT ²)	STRATUM DESCRIPTION GROUND ELEV. 283.1	ATTER	BERG LD	H (112 (5
					Loose brown silty sand (SM)			
5 -				4.5+	Hard tan clay with sand seams (CH)	61	18	43
10 -			ē		Loose tan clayey sand (SC)	2.7	14	13
5				4.5+	Hard tan and brown clay with silt seams (CH)	90	20	70
0 -				+.5+	22.0'			
5-1				.5+	Dense tan and gray clayey sand (SC) -becomes gray and brown laminated	33	23	1
0		٠		4+	Hard gray and brown laminated (CL) sandy clay	37	20	15
5				4+		39	18	2.
=	1	1			(Continued on Page 2)			

			Œ	2	Rotary Wash/ tached Plan Type Boring/Sampling: Dry Auger DEPTH TO WATER:			
DEPTH (FT.)	SYMBOL	SAMPLES	STANDARD PENETROMETE [BLOWS/FT.]	HAND PENETROMETI (TONS/FT ²)	STRATUM DESCRIPTION GROUND ELEV. 283.1	ATTERB	erg Lim	rrs (s
40-				4+	Hard gray and brown laminated (CL) sandy clay	44	21	2
50 -					Boring Terminated @ 50.0' NOTE: Seepage at 7.0' during drilling on 5-3-88. Water @ 5.0' and open to 8.0' on 5-11-88. Water @ 6.0' and caved on 8-1-88 Seepage @ 9.0' in test pit excavated to 11.0' on 8-1-88. Water @ 10.8' after 15 minutes. Seepage @ 11.0' and 20.0' during drilling on 4-26-89. Water @ 20.0' upon completion.		1	2

PROJECT: Angelina County Landfill (1987) Angelina County, Texas

JOB NO.: 164-87

Rotary Wash/ 12-21-89

		.E3	ARD Meter /ft.)	METER FT ²	DEPTH TO WATER:			
DEPTII (FT.)	1 N	SAMPLES	BTANDARD PENETROMETER [BLOWS/FT.]	HAND PENETROMETER (TONS/FT ²)	STRATUM DESCRIPTION GROUND ELEV. 268.1	ATTER LL	erg Ld	(113 (5
				2.5	Firm tan silty sand (SM)			
				4.5+ 4.5+	Hard tan and brown clay with silt seams (CH)	82	19	6.
				4.5+	Hard gray sandy clay with sand seams (CL)	40	22	1
		I		4.5+		41	21	2
				4.5+			t	
					28.0'			
				4.5'	Hard gray clay with sand seams (CH)	59	18	4
				4.5+	(Continued on Page 2)			

L	OG	OF	BOR	ING	NO.	20
_						

Angelina County Landfill (1987) Angelina County, Texas PROJECT:

 r_1

r.i

JOB NO.: 164-87

DATE: 5-4-88

12-21-89 Rotary Wash/

F		RD ETER	ID METER FT ²)	DEPTH TO WATER:	-		
DEPTH (FT.)	SAMPLES	STANDARD PENETROMET (BLOWS/FT.	HAND PENETROMI (TONS/F)	STRATUM DESCRIPTION GROUND ELEV. 268.1	ATTERI	ERG LIM	धाड (इ
				Hard gray clay with sand seams (CH)			
0-			4.5+	Dense gray clayey sand (SC)	38	20	18
	5		4.5+	45.0'			
				Hard dark gray clay with sand (CH) seams and traces of lignite			
1			4+	50.0'	52	23	29
				Note: Boring dry upon completion on 5-4-88 Water @ 23.0 and open to 27.0' on 5-11-88.		Ť	

Angelina County Landfill (1987)

Angelina County, Texas

JOB NO.: 164-87

DATE: 6-3-88

Rotary Wash/ LOCATION: See Boring Plan TYPE BORING/SAMPLING: Dry Auger

12-21-89 STANDARD PENETROMETER (BLOWS/FT;) DEPTH TO WATER: DEPTH (FT.) STRATUM DESCRIPTION ATTERBERG LIMITS (%) GROUND ELEV. 277.1 3.0 Firm tan and brown silty fine (SM) 1.7 -becomes slightly clayey with calcareous nodules and clay pockets 5 1.7 22 20 2 6.0' . Hard gray and tan clay with (CH) 112 25 87 4.5 silt laminations, lignitic clay seams and limonite stains 3.5 -becomes very stiff 10 12.0' 4+ Hard brown and gray laminated (CH) 98 22 76 clay with lignitic clay seams 15 4+ -with sand pockets 21.0' 4+ Dense gray and brown clayey 15 (SC) 65 50 25 sand with silty sand laminations 4+ 30 4+ -with layers of sandy silt Non-Plastic

(Continued on Page 2)

Angelina County Landfill (1987) Angelina County, Texas PROJECT:

1

1 10

11

11

11

I.

TI

JOB NO.: 164-87

		FER	L'ER	DEPTH TO WATER:			
DEPTH (FT.) SYMBOL	SAMPLES	STANDARD PENETROMET (BLOWS/FT.	HAND PENETROMET (TONS/FT ²	STRATUM DESCRIPTION GROUND ELEV. 277.1	ATTERS!	erg Lini	13 (%
	6.1.		4+	Dense gray and brown very (SC) clayey sand with laminations of clay and silty sand			
		4	4+				
			4+	Boring Terminated @ 50.0'	53	17	
		•		NOTE: Seepage @ 21' while drilling on 6-3-88. Water @ 20' and caved @ 37' upon completion. Water @ 3' and caved @ 15.5' on 6-9-88. Bailed to 12.5', but heavy seepage from 3' to 7' on 6-9-88. Water @ 4' and caved @ 13' one hour after bailing. Water @ 4.5' and caved @ 12' on 8-1-88. No seepage in test pit excavated to 11' on 8-1-88.		7	

Angelina County Landfill (1987)
Angelina County, Texas

11

JOS NO.: 164-87

DATE: 6-2-88

Rotary Wash/ 4-26-89 LOCATION: See Boring Plan Type Boning Falls

	5	RD ETER	ETER TZ)	DEPTH TO WATER:			
SYMBOL	SAMPLE	STANDA! PENETROM! (BLOWS/F	HAND FENETROM (TONS/F	STRATUM DESCRIPTION GROUND ELEV. 300.0	ATTER	PL	भार (१
			1.7	2.0' Firm tan and brown silty sand (SM)			
			4+	Firm tan and brown silty fine (SM) sand with red and tan clay seams	Non-	Pla	sti
			4+	Hard tan and brown laminated (CH) clay with limonite stains, slickensides and calcareous nodules	109	32	77
	•		3.0	Firm gray and tan laminated (SC) very clayey sand with brown clay pockets and layers 16.5'	60	15	4:
			1.2	Firm gray and tan laminated (SC) clayey sand with limonite stains	30	14	1.
4				22.5' Hard dark gray clay (CH)			
			4+	Hard brown lignite (PT)			
			4+	Hard gray and brown laminated (CL) sandy clay			
			4+	-with sandstone seams			
	SYMBOL SYMBOL	SAMPLES SAMPLES	STANDARD STANDARD FENETROMETER (BLOWS/FT,)	3 - A + A + A + A + A + A + A + A + A + A	STRATUM DESCRIPTION STRATUM DESCRIPTION GROUND ELEV. 300.0	STRATUM DESCRIPTION ATTEM CROUND ELEV. 300.0 1.7 2.0, Firm tan and brown silty sand (SM) 4+ Firm tan and brown silty fine (SM) Non- sand with red and tan clay seams 4+ Clay with limonite stains, slickensides and calcareous nodules 12.0' 3.0 Firm gray and tan laminated (SC) clay pockets and layers 16.5' Firm gray and tan laminated (SC) clayey sand with limonite stains 109 1.2 21.0' 22.5' Hard dark gray clay (CH) 4+ Lard gray and brown laminated (SC) sandy clay Hard gray and brown laminated (SC) 1.2 21.0' 21.0' 22.5' Hard dark gray clay (CH) Hard gray and brown laminated (CL) sandy clay	STRATUM DESCRIPTION ATTEMBERGING ATTEMBERGING APPLIA A+ Firm tan and brown silty sand (SM) A+ S.O.* Firm tan and brown silty fine (SM) A+ S.O.* Hard tan and brown laminated (CH) Clay with limonite stains, slickensides and calcareous nodules A+ S.O.* Firm gray and tan laminated (SC) 12.O.* Firm gray and tan laminated (SC) Clayey sand with brown clay pockets and layers 16.5.* Firm gray and tan laminated (SC) Clayey sand with limonite stains 1.2 21.0.* A+ Bard dark gray clay A+ Bard dark gray clay Hard brown lignite (PT) Hard gray and brown laminated (CL) Hard gray and brown laminated (CL) Sandy clay

PROJECT: Angelina County Landfill (1987)

110

11

L

11

FL

11

Pi

11,

19

JOB NO.: 164-87

Angelina County, Texas

DATE: 6-2-88

LOCATION: See Boring Plan TYPE BORING/SAMPLING, Dry Auger STANDARD PENETROMETER (BLOWS/FT.) DEPTH TO WATER: HAND PENETROMETE (TONS/FT²) DEPTH (FT.) STRATUM DESCRIPTION ATTERBERG LIMITS (% GROUND ELEV. 300.0 PL Pl Hard gray and brown laminated (CL) sandy clay 4+ 40 42.01 Firm gray clayey sand with (SC) 2.5 clay seams 30 26 4 45.0' 45 Hard dark gray clay with sand (CH) seams and traces of lignite 4+ 50.0' 58 25 33 50 Boring Terminated @ 50.0' NOTE: Seepage @ 16.5' while drilling on 6-2-88. 55 Dry upon completion. Dry and caved @ 16.5' on 6-9-88. Seepage @ 42.0' while drilling on 4-26-89. Water @ 32.0' upon completion. Water @ 18.0' and caved @ 33.0' on 5-8-89.

PROJECT: Angelina County Landfill (1987)
Angelina County, Texas

.i

4

JOB NO.: 164-87

Rotary Wash/Location: See Boring Plan TYPE BORING/SAMPLING: Dry Auger

DATE: 6-13-88 / 4-19-89 12-20-89

_		ER	ER	DEPTH TO WATER:			
44480	PALINA	STANDARD PENETROMETE (BLOWS/FT.)	HAND FENETROMETE	STRATUM DESCRIPTION GROUND ELEV. 282.8	ATTERB	ERG LIM	TS (%
			0.5	Loose tan and brown silty sand (SM)			
	A SA		4+	Firm tan and brown clayey sand (SC) with gray and brown clay seams	23	14	9
			4+	Hard brown and tan laminated (CH) clay with limonite stains and lignitic clay seams	77	25	5 2
1	7			-with sand layer @ 10'			
			4+	Hard gray and brown laminated (CH)	75	23	5 2
			4+		69	19	5 (
			4+				
			4.5	Boring Terminated @ 35.0' NOTE: Seepage @ 11' while drilling.on 6-13-89. Water @ 8' upon completion. Water @ 8' and caved @ 18.5' on 6-14-88.	61	17	4
1			4+	Water @ 8' and caved @ 17' on 8-1-88. Heavy seepage @ 9.5' in test pit excavated to 11' on 8-1-88.	54	20	3

PROJECT: Angelina County Landfill (1987)
Angelina County, Texas

11.

11

1.1

11

Li

14

JOB NO.: 164-87
DATE: 6-13-88

LOCATION: See Boring Plan TYPE BORING/SAMPLING: Dry Auger

-	M		LER -	FER	DEPTH TO WATER:			
ОЕРТН (FT.)	SYMBOL	SAMPLES	STANDARD PENETROMETI (BLOWS/FT.)	HAND PENETROMET (TONS/FT ²)	STRATUM DESCRIPTION GROUND ELEV. 287.8	ATTERS LL	erg Lim	(ITS (8
				1.0	1.5' Firm tan and brown silty sand (SM)			
				4+	Hard tan and brown clay with (CH) limonite stains and sand pockets	62	15	47
5 ~				4+	Firm tan and brown very clayey (SC) sand with limonite stains and sand pockets			
10 -				4.5	-with brown clay laminations	49	13	36
					12.5'			
15 -				2.5	Firm gray and tan very clayey (SC) sand with gray and tan clay seams and limonite stains	60	18	4.7
					18.5'		-	
20-				4+	Hard brown and tan laminated (CH) clay with limonite stains	7 6	22	5 4
25 ~				4+	Hard brown lignite with gray (Pt) clay seams 25.0'			
30 <					Boring Terminated @ 25' NOTE: Seepage @ 13' while drilling. Boring dry and caved @ 15' upon completion. Dry and caved @ 12.5' on 6-14-88.			

PROJECT: Angelina County Landfill (1987)
Angelina County, Texas

JOB NO.: 164-87

. .

11

11

11.

:1

DATE: 6-13-88 4-18-89

LOCATION: See Boring Plan

-			D TER	TER	DEPTH TO WATER:			
ОЕРТН (FT.)	вумвоц	SAMPLES	STANDARD FENETROMET (BLOWS/FT.	HAND PENETROME (TONS/FT	STRATUM DESCRIPTION GROUND ELEV. 296.1	ATTERB	ERG LIM	ITS (?
				υ.5	2.0' Loose tan and brown silty sand (SM)			
. 5 -		100	_	3.0	Firm tan and brown clayey sand (SC) with limonite stain, calcareous nodules, and tan clay pockets and seams	27	,15	1:
10 -				4.0		49	13	3
					-sand content increasing			
15 -				4+				
Z0 ~				3.5		42	17	2
25 <				1.7	-becomes firm tan and gray clayey sand with brown clay seams			
					27.0'	42	17	2
30 <		X	59		Hard brown and gray laminated (CL) silty clay	49	21	2
15-				4+	-becomes sandy clay			
=	1/				(Continued on Page 2)	1		

PROJECT: Angelina County Landfill (1987) Angelina County, Texas

JOB NO.: 164-87

DATE: 6-13-88

Rotary Wash/
LOCATION: See Boring Plan Type Boring/Sampling: Dry Auger

4-18-89

F .		RD ETER	ETER T2)	DEPTH TO WATER:			
DEPTH (FT.)	SAMPLES	STANDARD PENETROMETE (BLOWS/FT.)	HAND PENETROMETE (TONS/FT ²)	STRATUM DESCRIPTION GROUND ELEV. 296.1	ATTERE	ERG LIM	15 (z
40-			4+	Hard brown and gray sandy clay (CL)			
.5			4+				
			4+	50.0'	47	19	2
15-				NOTE: Boring was dry upon completion on 6-13-88. Water @ 21.0' and caved @ 21.5' on 6-14-89.			

PROJECT: Angelina County Landfill (1987)
Angelina County, Texas

 I_t

JOB NO.: 164-87

DATE: 6-2-88

1.1		ARD METER	ETER T2)	DEPTH TO WATER:			
DEPTH (FT.)	SAMPLES	STANDAD PENETROME (BLOWS/F	HAND PENETROMI	STRATUM DESCRIPTION GROUND ELEV. 283.7	ATTERE LL	ERG LIX)1 11 11
			1.2	Firm tan silty fine sand (SM)			
5 -			4+	Firm gray and tan very clayey (SC) sand with tan sand pockets and limonite stains	52	16	36
10-			3.7	Hard tan, brown and gray (CH) laminated clay with limonite stains, slickensides, and seams of lignitic clay and sand	78	25	53
1			4+	16.0'			
20			4+	Hard gray laminated very clayey (SC) sand with limonite stains	54	15	39
			<u> </u>	23.0'			-
25			2.0	Firm gray clayey sand with (SC) seams of lignite and clay 26.0'			
10			4+	Hard dark gray laminated clay (CH)	53	22	31
15			4+	-with layers of very clayey sand			
— 7/	1	1	1	10-11-11-11-1-1-1-1-1-1-1-1-1-1-1-1-1-1	1		

Angelina County Landfill (1987) Angelina County, Texas PROJECT:

JOB NO.: 164-88

DATE: 6-2-88

See Boring Plan

(FT.)	LES	METER	VD METER /FT ²)	DEPTH TO WATER:			
DEPTH (FT.)	SYMBOL	STANDARD PENETROMETER (BLOWS/FT.)	PENETROME (TONS/FT	STRATUM DESCRIPTION GROUND ELEV. 283.7	ATTERE LL	erg Lid	(1T3 (:
			4+	Hard dark gray laminated (CH) clay			
5				Boring Terminated @ 40.0' NOTE: Seepage @ 23' while drilling. Water @ 24' upon completion. Water @ 16.5' and caved @ 22' on 6-9-88. Bailed to 19.5' @ 10:30 on 6-9-88, and seepage @ 17'. Water @ 17' and caved @ 22' @ 11:35 on 6-9-88.			

LOG OF BORING NO.	27
-------------------	----

Angelina County Landfill (1987) Angelina County, Texas

.[

LJ

1:

164-87 108 NO.:

DATE: Rotary Wash/

6-2-88 4-27-89

STANDARD STANDARD FENETHOMETI (BLOWS/FT.) HAND FENETROMETI	STRATUM DESCRIPTION GROUND ELEV. 273.0	-	BERG LLD	1112 (2
	AUGUIN FERA, Z/J.U	L	PL	Pt
1.2	Firm gray and tan silty fine (SM)			
4.5	Firm gray, tan and brown silty (SM) 4.0' fine sand with yellow clay pockets	Non	-Pla	sti
-	Very stiff gray and tan clay (CH) with limonite stain and sand laminations and seams	81	14	67
4+	12.5'			
1.2	Firm gray and tan clayey sand (SC) with clay laminations	37	22	15
4+	Hard gray clay with fine sand (CH) laminations	69	19	50
4+				
	Hard gray laminated sandy clay (CL)	43	18	25
	3.5 4.5 4+	Firm gray, tan and brown silty (SM) fine sand with yellow clay pockets 3.5 Very stiff gray and tan clay (CH) with limonite stain and sand laminations and seams 4+ 12.5' 1.2 Firm gray and tan clayey sand (SC) with clay laminations 17.0' 4+ Hard gray clay with fine sand (CH) laminations 4+	Firm gray, tan and brown silty (SM) fine sand with yellow clay pockets 3.5 Very stiff gray and tan clay (CH) with limonite stain and sand laminations and seams 4.5 Firm gray and tan clayey sand (SC) with clay laminations 1.2 Firm gray and tan clayey sand (SC) 37 1.7.0' 4+ Hard gray clay with fine sand (CH) 69 laminations 4+	Firm gray, tan and brown silty (SM) fine sand with yellow clay pockets Non-Pla 3.5 Very stiff gray and tan clay (CH) with limonite stain and sand laminations and seams 81 14 4.5 Firm gray and tan clayey sand (SC) with clay laminations 37 22 1.2 Firm gray and tan clayey sand (SC) 37 22 17.0' 4+ Hard gray clay with fine sand (CH) 69 19 laminations

PROJECT: Angelina County Landfill (1987)

Angelina County, Texas

.1

13

11

11

11

11

1

JOB NO.: 164-87

DATE: 6-2-88

STRATUM DESCRIPTION ATTERMENCULATES OF LL. Ft. Pt. Hard gray laminated sandy clay (CL) Boring Terminated @ 35.0' NOTE: Seepage @ 12.5' while drilling. Boring was very dry upon completion. Water @ 8' on 6-9-88. Bailed to 10.5' @ 10:50 on 6-9-88. Seepage coming in @ 9' to 10' depth. Water @ 8' and caved @ 12' @ 11:48 on 6-9-88. Water @ 8' and caved @ 12' on 8-1-88. No seepage in test pit excavated to 11' on 8-1-88. Seepage @ 13' while drilling on 4-27-89.	RD RD ETER FT.)	DEPTH TO WATER:			
Boring Terminated @ 35.0' NOTE: Seepage @ 12.5' while drilling. Boring was very dry upon completion. Water @ 8' on 6-9-88. Bailed to 10.5' @ 10:50 on 6-9-88. Seepage coming in @ 9' to 10' depth. Water @ 8' and caved @ 12' @ 11:48 on 6-9-88. Water @ 8' and caved @ 12' on 8-1-88. No seepage in test pit excavated to 11' on 8-1-88.	SYMEDE SAMPLE STANDA PENETROM (BLOWS/I HAND PENETROM (TONS/F				
Water @ 13.5' upon completion on 4-27-89.		Hard gray laminated sandy clay (CL) 35.0' Boring Terminated @ 35.0' NOTE: Seepage @ 12.5' while drilling. Boring was very dry upon completion. Water @ 8' on 6-9-88. Bailed to 10.5'@ 10:50 on 6-9-88. Seepage coming in @ 9' to 10' depth. Water @ 8' and caved @ 12'@ 11:48 on 6-9-88. Water @ 8' and caved @ 12' on 8-1-88. No seepage in test pit excavated to 11' on 8 Seepage @ 13' while drilling on 4-27-	-1-88 -9.	19	

PROJECT: Angelina County Landfill (1987)
Angelina County, Texas

JOS NO.: 164-87

DATE: 6-13-88

LOCATION: See Boring Plan TYPE BORING/SAMPLING: Dry Auger

4-27-89

_	ER	ER (DEPTH TO WATER:				
BEPTH (FT.) SYMBOL, SAMPLES	STANDARD PENETROMET [BLOWS/FT.]	HAND PENETROMETE (TONS/FT ²)	STRATUM DESCRIPTION GROUND ELEV. 268.9		ATTERB LL	erg Lim	ITS (9
		0.5	Loose tan and brown silty sand -becomes slightly clayey	(SM)			
5	_	4+	Hard gray and tan laminated clay with sand seams and limonite stains	(CH)	76	24	5
0 -		4+	Firm gray and tan laminated clayey sand with brown clay seams and limonite stains	(SC)	34	12	2:
5		4+	Hard gray and tan laminated sandy clay with limonite stains and brown clay seams	(CL)	32	19	1
10		4+	Hard gray laminated clay	(CH)		1	-
3		4+	-with lignite seam		6 8	22	4
		4+	-becomes gray and brown		74	17	5
		4+	Dense gray clayey sand with traces of lignite	(SC)	34	21	1

PROJECT: Angelina County Landfill (1987) Angelina County, Texas

11

11

4

TI

11

1

11

JOB NO.: 164-87

DATE: 6-13-88 12-21-89

Rotary Wash/ LOCATION: See Boring Plan TYPE BORING/SAMPLING: Dry Auger

STANDARD PENETROMETER (BLOWS/FT.) DEPTH TO WATER: PENETROMETE STRATUM DESCRIPTION ATTERBERG LIMITS (%) GROUND ELEV. 260.0 3.0 Firm tan and brown silty sand (SM) -with gray clayey sand seams 4+ 4.0' 4+ Hard gray and brown sandy clay 47 (CL) 14 33 with tan sand pockets 4+ 8.0' 4+ Hard gray and tan clay with (CH) 70 17 53 10 limonite stains 11.0' Hard gray laminated clay with (CH) limonite stains and sand seams 4+ 85 18 67 15 4+ 20 22.0' 4+ Hard dark gray laminated sandy (CL) 15 25 25 clay with sand seams 4+ 32.0' Firm dark gray laminated clayey (SC) 4+ sand with seam of gray medium sand 27 14 13 (Continued on Page 2)

Angelina County Landfill (1987)
Angelina County, Texas

JOB NO.: 164-87 DATE: 6-13-88

		ren :-	TER	DEPTH TO WATER:			
SYMBOL	SAMPLES	STANDARD PENETROMETE (BLOWS/FT.)	HAND PENETROMETE (TONS/FT ²)	STRATUM DESCRIPTION	AITERI	IERG LUM	_
70		4		GROUND ELEV. 260.0	11	7.	PL
	- 4		4+	Firm dark gray laminated clayey (SC) sand with seams of sand and gray clay			
			4+	45.0'	45	17	28
			4+	Hard dark gray sandy clay (CL) 50.0' Boring Terminated @ 50.0'	49	19	3
				NOTE: Seepage @ 34' while drilling on 6-1 Water @ 34' upon completion. Water @ 7.5' and caved @ 37.5' on 6-14-88. No seepage in test pit excavated to li' on 8-1-88.	3-88 .		

PROJECT: Angelina County Landfill (1987) Angelina County, Texas

JOB NO.: 164-87

DATE: 6-2-88

LOCATION: See Boring Plan TYPE BORING/SAMPLING: Dry Auger

12-21-89 4-27-89

2			D TER	Z)	DEPTH TO WATER:			
БЕРТН (FT.)	SYMBOL	SAMPLES	STANDARD PENETROMETE (BLOWS/FT.)	PENETROMETE (TONS/FT ²)	STRATUM DESCRIPTION GROUND ELEV. 265.5	ATTER	BERG LLA	UTS (I
				1.7	Firm brown and tan silty fine (SM) sand 4.0' -becomes brown, tan and gray	Non	-Pla	sti
10 -			_	4 - 5 4 + 4 +	Hard gray, tan, and brown (CH) laminated clay with limonite stain and pockets of red sandy clay -with silt seams and sand pockets	107	23	84
15 ~				4+		81	19	62
20-				4+	Hard dark gray clay (CH)	54	24	3(
25 <				4+	Dense gray silty fine sand (SM) with gray clay seams			
0 -		•		4+	Hard gray and brown laminated (CL) sandy clay			
15~				4+	(Continued on Page 2)	46	22	2

li

PROJECT: Angelina County Landfill (1987) Angelina County, Texas

UL.

11

JOB NO.: 164-87 DATE: 6-2-88

LOCATION: See Boring Plan TYPE BORING/SA

H							
SYMBOL	SAMPLES	STANDARD PENETROMETE [BLOWS/FT.]	HAND PENETROMETE (TONS/FT ²)	STRATUM DESCRIPTION GROUND ELEV. 265.5	ATTERBE	ERG LIM	THE REAL PROPERTY.
40-		134	4+	Hard gray and brown laminated (CL) sandy clay 45.0' Hard gray clay with sand seams (CH) 50.0' Boring Terminated @ 50.0' NOTE: Seepage @ 21.5' while drilling. Water @ 23' upon completion. Water @ 10' on 6-9-88. Bailed to 19' @ 11:10 on 6-9-88. Water @ 18' @ 12:00 on 6-9-88.	58	20	3.8

PROJECT: Angelina County Landfill (1987)

Angelina County, Texas

JOB NO.: 164-87

LOCATION: See Boring Plan Type BORING/SAMPLING: Date: 11-23-88

(FT.)	0,	ES	ARD METER /FT.)	NETER	DEPTH TO WATER:		21-8	
DEPTH (FT.)	SYMBOL	SAMPLES	STANDARD PENETROMETE! (BLOWS/FT.)	HAND PENETROMETE (TONS/FT ²)	STRATUM DESCRIPTION GROUND ELEV. 272 Approx.	ATTER:	BERG LIX	HITS (
		The State of		2.2	Firm gray and tan silty fine (SM) sand -becomes slightly clayey			
5 ~				4+4+	Hard gray, tan, and brown clay (CH) with silt laminations and sand seams			
10 -				4.0		62	17	4;
15				2.5	-becomes very stiff			
				1.5	Firm gray and brown clayey (SC)			
20 <		4.		4.5	Hard gray and brown laminated (CL) 21.0' sandy clay			
25 <				1.5	Firm gray and brown very clayey (SC) sand	54	15	39
30 <				4+	Hard gray and brown laminated (CH) clay	88	18	70
35		0		4+	(Continued on Page 2)			

PROJECT: Angelina County Landfill (1987)

Angelina County, Texas

JOB NO.: 164-87

DATE: 11-23-88

LOCATION: See Boring Plan TYPE BORING/SAMPLING: Dry Auger

12-27-88

			TER	Z)	DEPTH TO WATER:			
ОЕРТН (FT.)	SYMBOL	SAMPLES	STANDARD PENETROMETE (BLOWS/FT.)	HAND PENETROMETE (TONS/FT ²)	STRATUM DESCRIPTION GROUND ELEV. 272 Approx.	ATTER LL	BERG LIN	IITS (%
- 40-				4+	Hard gray and brown laminated (CH) clay			
45-		è		4+	45.0'	56	24	32
- 55-				4+	Hard dark gray laminated silty (CL) clay with silt seams 50.0' Boring Terminated @ 50.0' NOTE: Heavy seepage @ 18.0' while drilling on 11-23-88. Boring was caved and dry @ 16.5' upon completion. Water @ 14.5' and caved @ 15.0' on 12-6-88. Water @ 20.0' and caved @ 37.5 on 4-27-89.	45	21	24

PROJECT: Angelina County Landfill (1987) Angelina County, Texas

ri.

JOB NO.: 164-87

DATE: 11-23-88

FT.	i,	ES	AETER VFT.)	D METER FT ²)	DEPTH TO WATER:			
ОЕРТН (FT.)	SYMBOL	SAMPLES	STANDARD PENETROMETE (BLOWS/FT.)	PENETROMETE (TONS/FT ²)	STRATUM DESCRIPTION GROUND ELEV. 280 Approx.	ATTER	BERG LD	it attz (i
				1.2	Firm gray and tan silty fine (SM) sand			
5 -		· 在一次 · · · · · · · · · · · · · · · · · · ·		4.0 4.5 4+	Hard gray, tan and brown (CH) laminated clay with sand and silt seams	83	17	. 66
				4+	12.0'			
				4.5	Firm gray, tan and brown very (SC) clayey sand -becomes brownish tan	50	17	3:
				4+	Hard gray and brown laminated (CH) clay with limonite stains	67	17	50
				4.0	27.0'		7	
				2.7	Firm gray and brown laminated (SC) clayey sand			
1				4+	Boring Terminated @ 35.0' NOTE: Seepage and caving @ 16' while drilling.			

Angelina County Landfill (1987)
Angelina County, Texas

164-87 JOB NO.:

11-22-88 DATE:

(FT.)	ES	ARD METER /FT.)	ID METER FT ²)	DEPTH TO WATER: Water @ 20' and caved @ 29' on 12-6-88	3.		
DEPTH (FT.)	SAMPLES	STANDA. PENETHOM (BLOWS/F	HAND PENETROMETE (TONS/FT ²)	STRATUM DESCRIPTION GROUND ELEV. 277 Approx.	ATTERE	ERG LIM	ii (1
			1.5	Gray and tan silty fine sand (SM) -with gray clay layer 4.0'			
			4+	Hard gray and tan laminated (CL) sandy clay with limonite stains	48	16	3
			4+	12.0'			
5 -			4+	Firm dark gray laminated clayey (SC) sand with silt and clay seams	27	15	1.
			4+				
			4+	-becomes very clayey sand	50	15	3
			4+	Firm gray laminated clayey sand (SC) with seam of coarse sand 29.5'			
				Hard dark gray laminated sandy (CL) clay			
5			4+	Boring Terminated @ 35.0' NOTE: Seepage @ 28' while drilling. Water @ 26.5' and caved @ 31' upon completi Water @ 20' and caved @ 30' on ll-23-88.	dn.		

·1

11

14

14

PROJECT: Angelina County Landfill (1987) Angelina County, Texas

1.1

11

11.

LL

1.1

10

JOB NO.: 164-87

Rotary Wash/ 11-22-88 4-19-89

FT.1	J .	s:	RD ETER FT.)	D METER FT ²)	DEPTH TO WATER:			
БЕРТИ (FT.)	SYMBOL	SAMPLES	STANDARD PENETROMETER (BLOWS/FT.)	HAND PENETROMI (TONS/F)	STRATUM DESCRIPTION GROUND ELEV. 269 Approx.	ATTERE	PL PL	rrs (
				1.2	Firm gray silty fine sand (SM)			
=				4+	Hard gray and tan sandy clay (CL) 6.0' with limonite stain			
0 -			-	3.2	Firm gray and tan laminated (SC) clayey sand with limonite stain	38	15	2
					12.0'			
5 -				4+	Hard gray and brown laminated (CH) clay with sand pockets and limonite stain	66	29	3
0 -			,	4+	22.5'			
1				1.0	Firm gray clayey sand (SC) 26.0'	38	13	2
				4+	Hard gray and brown laminated (CL) sandy clay			
				3.5				
\exists					(Continued on Page 2)			

PROJECT: Angelina County Landfill (1987) Angelina County, Texas

JOE NO .: 164-87

DATE: 11-22-88 4-19-89

Rotary Wash/

(FT.)	ES	ARD METER /FT.)	ID METER	DEPTH TO WATER:			
100 H T T T T T T T T T T T T T T T T T T	SAMPLES	STANDARD PENETROMETE (BLOWS/FT.)	PENETROMETE (TONS/FT ²)	STRATUM DESCRIPTION GROUND ELEV. 269 Approx.	ATTERS	ERG LIMI	TS (%
				Hard gray and brown laminated (CL) 37.0' sandy clay			
49			4+	Hard brown and gray laminated clay with sand pockets (CH)	56	22	34
15			4+				
			4+	50.0'	62	23	3
				NOTE: Heavy seepage @ 24.0' while drilling on 11-22-88. Water @ 14.0' and caved @ 26.0' upon completion. Water @ 11.0' and caved @ 24.0' on 11-23-88. Water @ 11.5' and caved @ 19.5' on 12-6-88.			

Soil Boring B-35 PROJECT: ACWMC Ground-Water Characterization DATE: 10-24-95 GEOLOGIST: John M. Wilson DRILL RIG: Geoprobe Model 5400 HOLE DIA .: 2.0" in. SAMPLER: John M. Wilson INITIAL GW DEPTH: ft. FINAL GW: ft. HOLE ELEV .: 276 ft. MSL CLASS SRAPHIC LOG Water Level SAMPLE WELL CONSTRUCTION DESCRIPTION DETAIL nscs (0 Clayey Sand; Loose, gray to dark gray, moist, some heavy SC minerals and organic material. Organic Fat Clay; Very stiff, dark gray to black, dry, small .25" thick laminations of sand and sill. OH Bentonite Seal Bottom of Boring @ 12.0' 13 14 15 16 17 18 19 20 Notes: Hydrex Environmental, Inc. Project No. Approximate elevation from site topographic map L-03-39 117 North Street, Suite 8 Nacogodoches, Texas 75961 Page I of I

Soil Boring B-36 PROJECT: ACWMC Ground-Water Characterization DATE: 10-24-95 GEOLOGIST: John M. Wilson DRILL RIG: Geoprobe Model 5400 HOLE DIA.: 2.0" in. SAMPLER: John M. Wilson INITIAL GW DEPTH: ft. FINAL GW: ft. HOLE ELEV .: 276 ft. MSL GRAPHIC LOG CLASS Water Level DEPTH SAMPLE WELL CONSTRUCTION DESCRIPTION DETAIL uscs (Interbedded organic silt and clay; Dense, dark gray, organic material and thin laminations of moist clay. SM/OH Bentonite Seal Bottom of Boring @ 12.0' 14 - 16 18 -20-22 24 26-28-30-Notes: Hydrex Environmental, Inc. Project No. Approximate elevation from site topographic map L-03-39 117 North Street, Suite 8 Nacogodoches, Texas 75961 Page 1 of 1

Soil Boring B-37 PROJECT: ACWMC Ground-Water Characterization DATE: 10-24-95 GEOLOGIST: John M. Wilson DRILL RIG: Geoprobe Model 5400 HOLE DIA .: 2.0" in. SAMPLER: John M. Wilson INITIAL GW DEPTH: ft. FINAL GW: ft. HOLE ELEV.: 285 ft. MSL CLASS SRAPHIC LOG Water Level SAMPLE DEPTH WELL CONSTRUCTION DESCRIPTION DETAIL uscs (0 Clayey Sand Interbedded with Silty Sand; Loose to very SC loose, lan moist, oxidized, intermittent layers of clay. and organic material. 6 10 Bentonite Seal 12 16 18 Organic Fat Clay; Very stiff, dark gray to black, dry, small .25" thick laminations of sand and silt, .5' thick lignite bed ОН at 19-19.5° increase in silt, dry, crumlby. Bottom of Boring @ 28.0' 30 Notes: Hydrex Environmental, Inc. Project No. Approximate elevation from site topographic map L-03-39 117 North Street, Suite 8 Nacogodoches, Texas 75961 Page 1 of 1

Soil Boring B-38 PROJECT: ACWMC Ground-Water Characterization DATE: 10-24-95 GEOLOGIST: John M. Wilson DRILL RIG: Geoprobe Model 5400 HOLE DIA.: 2.0" in. SAMPLER: John M. Wilson INITIAL GW DEPTH: ft. FINAL GW: ft. HOLE ELEV.: 285 ft. MSL CLASS SRAPHIC LOG Water Level DEPTH SAMPLE WELL CONSTRUCTION DESCRIPTION DETAIL nscs 0 Clayey Sand Interbedded with Silty Sand; Loose to very SC loose, tan dry, oxidized, intermittent layers of clay, and organic material. Bentonite Seal Organic Fat Clay; Very stiff, dark gray to black, dry. OH Lignite; Crumbly, dark brown to black. Pt Silty Organic Clay: Hard, clay, very dense silt interbeds. OL dark gray, dry. Bottom of Boring @ 23.0' -24 26 28 30 Notes: Hydrex Environmental, Inc. Project No. Approximate elevation from site topographic map L-03-39 117 North Street, Suite 8 Nacogodoches, Texas 75961 Page 1 of 1

Soil Boring B-39 PROJECT: ACWMC Ground-Water Characterization DATE: 10-24-95 GEOLOGIST: John M. Wilson DRILL RIG: Geoprobe Model 5400 HOLE DIA.: 2.0" in. SAMPLER: John M. Wilson INITIAL GW DEPTH: ft. FINAL GW: ft. HOLE ELEV .: 267 ft. MSL CLASS SRAPHIC LOG Water Level DEPTH SAMPLE WELL CONSTRUCTION DESCRIPTION DETAIL uscs (Silty Sand; Loose, lan, dry (top soil) Interbedded Fat Clay and Clayey Sand; Brown and tan, very stiff to loose, moist, sand laminations .5" thick, SC/CH approx. 50% SC. 6 - 8 10 Bentonite Seal - 12 -14 Becomes saturated a 15' 16 18 20 Silly Sand; Loose, gray, saturated. SM 22 24 26 28 Notes: Hydrex Environmental, Inc. Project No. Approximate elevation from site topographic map L-03-39 117 North Street, Suite 8 Nacogodoches, Texas 75961 Page 1 of 1

Soil Boring B-41 PROJECT: ACWMC Ground-Water Characterization DATE: 11-4-95 GEOLOGIST: John M. Wilson DRILL RIG: Geoprobe Model 5400 HOLE DIA.: 2.0" in. SAMPLER: John M. Wilson INITIAL GW DEPTH: ft. FINAL GW: ft. HOLE ELEV .: 290 ft. MSL GRAPHIC LOG USCS CLASS Water Level SAMPLE DEPTH WELL CONSTRUCTION DESCRIPTION DETAIL Silty Sand; Loose, light gray to lan, moist Bentonite Seal Interbedded Silt and Orgnaic Lean Clay; Crumbly, dark gray, loose, silt in in thin .25" thick laminations. OL 16 18 20 22 small streaks of lignite, dry 26 28 Notes: Hydrex Environmental, Inc. Project No. L-03-39 Approximate elevation from site topographic map 117 North Street, Suite 8 Nacogodoches, Texas 75961 Page 1 of 2

Soil Boring B-41 PROJECT: ACWMC Ground-Water Characterization DATE: 11-4-95 GEOLOGIST: John M. Wilson DRILL RIG: Geoprobe Model 5400 HOLE DIA.: 2.0" in. SAMPLER: John M. Wilson INITIAL GW DEPTH: ft. FINAL GW: ft. HOLE ELEV .: 290 ft, MSL GRAPHIC LOG USCS CLASS Water Level SAMPLE DEPTH WELL CONSTRUCTION DESCRIPTION DETAIL 30 OL 36 Bottom of Boring @ 40.0' -42-44-46 48 50 52 54-56 58 60 Notes: Hydrex Environmental, Inc. Project No. L-03-39 Approximate elevation from site topographic map 117 North Street, Suite 8 Nacogodoches, Texas 75961 Page 2 of 2

PROJECT: 114.5-Acre Tract, Angelina County Landfill

Angelina County, Texas

JOB NO.: 164-87

1

1 *

1 .

1 .

DATE: 11-18-91 Rotary Wash for Well Install. LOCATION: See Monitor Well Plan TYPE BORING: Dry Auger for Soil Sampling DEPTH TO WATER: MONITOR WELL DATA HAND PENETROMETER (TONS/FT².) STANDARD PENETROMETER (BLOWS/FT.) (H) SAMPLES SYMBOL E TOP OF CASING -DEP TH DEPTH STRATUM DESCRIPTION CONCRETE PAD -GROUND ELEV. 319.5 Silty sand BENTON ITE/CEMENT CASING 5 Clayey sand 5 BENTONITE 10 10 Firm tan clayey sand with 15 (SC) sand seams and ferrous stains 2.5 18.0' Very stiff tan clay with (CH) 2.0 sand seams and ferrous stains 20 20 SAND PACK 22.0' 20' SCREEN (15'-35' DEPTH) 1.7 Firm gray clayey sand (SC) with sand seams 25 25 26.0' Hard gray and tan sandy clay (CL) 3.7 with sand seams, ferrous stains, and ferrous partings 30 30 4+ 36.0' Boring Terminated @ 36.0' 35 35 Slight seepage @ 22' while drilling. Switched to rotary wash @ 25'.

PROJECT: 114.5-Acre Tract, Angelina County Landfill

JOB NO.: 164-87

Angelina County, Texas

DATE: 11-18-91
Rotary Wash for Well In

	V.		ρc	H .	DEPTH TO WATER:		NITOR WELL	
מיוין או רפט	SYMBOL	SAMPLES	STANDARD PENETROMETER (BLOWS/FT.)	HAND PENETROMETE (TONS/FT ² .)	STRATUM DESCRIPTION GROUND ELEV. 319.5	оертн (гт.)	TOP OF	CASING
5 4				2.5	Firm tan clayey sand with (SC) sand seams and ferrous stains 18.0' Very stiff tan clay with sand (CH) seams and ferrous stains 22.0'	> 5 < > 10 < > 15 < > 20 <	Section of the sectio	VN
5				1.7	Firm gray clayey sand (SC) with sand seams 26.0'	> 25 <		
0				3.7	Hard gray and tan sandy clay (CL) with sand seams, ferrous stains, and ferrous partings	> 30 <		
5						> 35 <		

DICKETT INCODE CONCINATION

PROJECT: 114.5-Acre Tract, Angelina County Landfill

JOB NO.: 164-87

Angelina County, Texas DATE:11-18-91 Rotary Wash for Well Instal LOCATION: See Monitor Well Plan TYPE BORING: Dry Auger for Soil Sampling DEPTH TO WATER: STANDARD PENETROMETER (BLOWS/FT.) MONITOR WELL DATA HAND PENETROMETER (TONS/FT².) DEPTH (FT.) SAMPLES SYMBOL DEPTH (FT.) STRATUM DESCRIPTION CASING GROUND ELEV. 319.5 Clays and sandy clays 40 with sand seams 40 BENTON ITE/CEMENT 45 45 50 50 BENTONITE 55 55 Hard laminated gray and brown clay with sand seams 60 60 4+ SAND PACK (58'-81' DEPTH 65 4+ 65 4+ 70 70

(Continued on Page 3)

PROJECT: 114.5-Acre Tract, Angelina County Landfill Angelina County, Texas

JOB NO.: 164-87

DATE: 11-18-91

		°ER →	es .	DEPTH TO WATER:		ITOR WELL DAT	
SYMBOL	SAMPLES	STANDARD PENETROMETE (BLOWS/FT.)	HAND PENETROMETER (TONS/FT ² .)	STRATUM DESCRIPTION GROUND ELEV. 319.5	оертн (гт.)	CASING-7	
5			4+ 1.0 4+	Hard laminated gray and brown (CII) clay with sand seams -with 6" sand layer @ 77' -with shale seam	> 75 <	SAND PACK (58'-81' DEPTH)	20 SCREEN
				Boring Terminated @ 81.0'			
0 <				Slight seepage @ 22' while drilling. See Log of Monitor Well No. 1A for details of well set @ 15' to 35.'	> 85 < > 90 <		
5 <				Six inch layer of saturated sand @ 77'.	▶ 95 ◀		
00 <				Switched from dry auger to rotary wash @ 25' due to caving soil.	> 100 <		

PICKETT INCORE CONCILITANTE

PROJECT: 114.5-Acre Tract, Angelina County Landfill Angelina County, Texas

JOB NO.: 164-87

DATE: 11-21-91 Rotary Wash for Well Install LOCATION: See Monitor Well Plan TYPE BORING Dry Auger for Soil Sampling DEPTH TO WATER: MONITOR WELL DATA STANDARD PENETROMETER (BLOWS/FT.) PENETROMETER (TONS/FT².) DEPTH (FT.) SAMPLES (F) TOP OF CASING SYMBOL DEPTH. STRATUM DESCRIPTION CONCRETE GROUND ELEV. 287.6 Tan silty sand (SM) 2.0' Firm tan and gray clayey (SC) 3.5 sand with clay seams 5 6.0' Very stiff reddish-tan and (CII) gray clay with seams of sand 3.0 SAND PACK (3:-16: DEPTH) and ferrous material 10 SCREEN (5:-15 DEPTH) 10.0' 10 10 Firm gray silty fine sand 2.5 with clay partings 1.0 14.0' 3.7 Very stiff gray clay with 15 (CH) 15 16.0' sand seams Boring Terminated @ 16.0' 20 20 Moderate seepage @ 6' while drilling. Samples below 6' were wet. 25 25 30 30 35 35

DATE: 11-21-91 Rotary Wash for Well Install LOCATION: See Monitor Well Plan TYPE BORING: Dry Auger for Soil Sampling DEPTH TO WATER: STANDARD PENETROMETER (BLOWS/FT.) MONITOR WELL DATA DEPTH (FT.) PENETROMETE (TONS/FT².) SAMPLES (F) TOP OF CASING SYMBOL CONCRETE PAD - P STRATUM DESCRIPTION DEPTH GROUND ELEV. 277.0 Silty sand BENTON ITE/CEMENT 24 BENTONITE Clay 5 5 7.0' Firm tan and brown clayey sand (SC) 10 10 4+ 13.0' Firm gray silty fine sand (SM) 0.5 15.0' 15 4+ 15 Hard laminated gray and (CL) brown sandy clay with sand seams 4+ SAND PACK (10:-33' DEPTE) 20 20 (12.-32. DEPTH) 15. SCREEN 0.5 -with layer of sand @ 22' 4+ 25.0' 25 25 4+ Firm gray clayey sand (SC) 30 30 4+ 33.0' Boring Terminated @ 33.0' 35 Slight seepage @ 15' and 23' while 35 drilling. Switched to rotary wash

rmuncul: 114.5-Acre Tract, Angelina County Landfill

Angelina County, Texas

JOB NO.: 164-87

PROJECT: 114.5-Acre Tract, Angelina County Landfill Angelina County, Texas

JOB NO.: 164-87

DATE: 11-23-91

Rotary Wash for Well Install TYPE BORING:Dry Auger for Soil Sampling LOCATION: See Monitor Well Plan DEPTH TO WATER: STANDARD PENETROMETER (BLOWS/FT.) HAND PENETROMETER (TONS/FT².) MONITOR WELL DATA DEPTH (FT.) SAMPLES (FT.) TOP OF CASING SYMBOL DEPTH STRATUM DESCRIPTION CONCRETE GROUND ELEV. 269.7 BENTONITE/CEMENT Silty sand BENTONITE 4. PVC CASING SEAL Sandy clay 5 5 Firm laminated brown and gray (SC) 10 clayey sand with sand seams 4+ and ferrous stain 15 4+ 15 DEPTH) SAND PACK (8.-31. 4+ -with lignite seam 20' SCREEN (10'-30' DEPIH) 20 20 1.7 -with clay seams 25 25 -with lignite seam 1.0 28.0' Hard laminated gray clay (CH) 4+ 30 30 31.0' Boring Terminated @ 31.0' Slight seepage @ 23' while drilling. Switched to rotary wash @ 25' because 35 of caving soil. 35

DIONETT MARCO

PROJECT: 114.5-Acre Tract, Angelina County Landfill Angelina County, Texas

JOB NO.: 164-87

DATE: 11-25-91

	LOC	OITA	N: See	Mon.	tor Well Plan TYPE BORING: Dry Auge	r for s	Soil S	ing l	ing
			œ_	E C	DEPTH TO WATER:	мон	NITOR W	ELL D	ATA
DEPTH (FT.)	SYMBOL	SAMPLES	STANDARD PENETROMETER (BLOWS/FT.)	PENETROMETE (TONS/FT ² .)	STRATUM DESCRIPTION GROUND ELEV. 275.5	оертн (гт.)	CONCRET	OF CAS	ING /
5 <				3.5	Firm tan and gray clayey (SC) sand with ferrous stains	> 5 <	24. BENTOHITE SEAL	4* PVC CASING	BENTON ITE/CENENT
5 <				2.7	Very stiff tan and gray sandy (CL) clay with ferrous stians and sand seams	> 15 <			
0 <				4+	Hard laminated gray and brown (CH) clay with seams of lignite and sand	> 20 <	SAND PACK (1033 DEPIB)		20. SCRZZN
				1.5	Firm gray clayey sand with (SC) seams of clay and lignite	> 25 <			
					Hard laminated gray clay (CH) with sand seams 33.0	30 <			
5 4					Boring Terminated @ 33.0' Slight seepage @ 16.5' and 25' while drilling. Rotary wash @ 25'.	> 35 <	, Di	reswig.	1

PROJECT: 114.5-Acre Tract, Angelina County Landfill

JOB NO.: 164-87

Angelina County, Texas

DATE: 11-25-91

Rotary Wash for Well Install.

TYPE BORING: Dry Auger for Soil Sampling LOCATION: See Monitor Well Plan DEPTH TO WATER: STANDARD PENETROMETER (BLOWS/FT.) MONITOR WELL DATA HAND PENETROMETER (TONS/FT².) DEPTH (FT.) SAMPLES (FT.) SYMBOL TOP OF CASING -STRATUM DESCRIPTION CONCRETE PAD 7 DEPTH GROUND ELEV. 268.8 5 Clay 5 BENTONITE 10 10 4+ Hard gray and brown clay with (CH) 15 lignite seams -with layer of wet sand from 3.7 19.5' to 21' (14'-27' DEPTH) 10. SCREEN (16.-26. DEPTH) 20 SAND PACK 20 -becomes hard gray clay with 4+ sand seams 25 25 4+ 27.0' Boring Terminated @ 27.0' 30 30 Moderate seepage @ 19.5' while drilling. Switched to rotary wash @ 20' because of caving soil. 35 35

PROJECT: 114.5-Acre-Tract, Angelina County Landfill Angelina County, Texas

JOB NO.: 164-87

DATE: 11-25-91 Rotary Wash for Well Install

			PK.	pr,	DEPTH TO WATER:		NITOR I		
0ЕРТН (FT.)	SYMBOL	SAMPLES	STANDARD PENETROMETER (BLOWS/FT.)	HAND PENETROMETER (TONS/FT ² .)	STRATUM DESCRIPTION GROUND ELEV. 262.2	оертн (гт.)	CONCRE	OF CASI	HC 7
5 <				4+ 3.2 1.0	Silty sand clay Hard brown and gray clay with (CH) ferrous stain, sand seams, and lignite partings -with 6" layer sand @ 13'	> 5 <	SAND PACK (8'-26' DEPTH) SEAL	HEREFER CASING C	15. SCREEN BENIONITE/CEMENT (1025. DEPTH) GROIT
25 <				4+	22.0' Hard brown and gray sandy clay (CL) with clayey sand layers 26.0'				
5 <					Boring Terminated @ 26.0' Slight seepage @ 13' while drilling. Switched to rotary wash @ 20' because of caving soil.	> 30 <			

PROJECT: 114.5-Acre Tract, Angelina County Landfill Angelina County, Texas

JOB NO.: 164-87

LOCATION: See Monitor Well Plan

TYPE BORING: Dry Auger for Soil Sampling

			ρĸ	α	DEPTH TO WATER:	nugei		NITOR WELL DATA
оертн (гт.)	SYMBOL	SAMPLES	STANDARD PENETROMETER (BLOWS/FT.)	HANO PENETROMETER (TONS/FT ² .)	STRATUM DESCRIPTION GROUND ELEV. 262.2		ОЕРТН (FT.)	TOP OF CASING
5 10 10 20 25 4				4+	Hard laminated gray and brown clay with sand seams	(CII)	> 10 <	SEAL 4. PUC CASING A. PUC CASING GROUT
35				4+	llard laminated gray and brown sandy clay with sand seams	(CL)	> 30 <	SAND PACK (30'-48' DEFTE) [[[[[]]][[]][[]][[]][[]][[]] 15' SCREEN (32'-47' DEFTE)

PROJECT: 114.5-Acre Tract, Angelina County Landfill Angelina County, Texas

JOB NO.: 164-87

DATE: 11-26-91

			α	ρ;	DEPTH TO WATER:	The second second	ITOR WELL DA	
DEPTH (FT.)	Semin Company	SAMPLES	STANDARD PENETROMETER (BLOWS/FT.)	HAND PENETROMETER (TONS/FT ² .)	STRATUM DESCRIPTION GROUND ELEV. 262.2	ОЕРТН (FT.)	CASING 7	
0				4+	Hard laminated gray and brown (CL) sandy clay with sand seams			
5				4+4+	Hard laminated gray and brown (CH) clay with sand seams	> 40 < 	SAND PACK (300-48: DEPTH)	15 SCREEN
7	1	4			Boring Terminated @ 48.0'			
5 <					Slight seepage @ 13' while drilling. Saturated sand seam @ 34'. Switched to rotary wash @ 20' because of caving soil. See Log of Monitor Well No. 7 for details of adjacent well set at 10'-15' zone.	> 50 <		

PICKETT- INCODE CONCINTANTE

PROJECT: 114.5-Acre Tract, Angelina County Landfill

JOB NO.: 164-87

Angelina County, Texas

DATE: 11-13-91 Rotary Wash for Well Install.

		hi			tor Well Plan TYPE BORING: Dry DEPTH TO WATER:	Muder		III San		
оертн (FT.)	SYMBOL	SAMPLES	STANDARD PENETROMETER (BLOWS/FT.)	HAND PENETROMETER (TONS/FT ² .)	STRATUM DESCRIPTION GROUND ELEV. 267.2		DEPTH (FT.)		OF CASI	_
5 4				0.5	Silty sand Sandy clay Firm gray clayey sand with clay partings	(SC)	> 10 <	SEAL SEAL	4. PVC CASING	- BENTONITE/CEMENT
0 <				1.0	Firm gray silty fine sand -with clayey sand seam	(SM)	> 25 <	SAND PACK (231-46' DEPTH)		ID. SCREEN

Page 2 of 2 LOG OF MONITOR WELL NO. 9 PROJECT: 114.5-Acre Tract, Angelina County Landfill JOB NO.: 164-87 Angelina County, Texas DATE: 11-13-91 Rotary Wash for Well Install LOCATION: See Monitor Well Plan TYPE BORING Dry Auger for Soil Sampling DEPTH TO WATER: MONITOR WELL DATA HAND PENETROMETER (TONS/FT².) STANDARD PENETROMETER (BLOWS/FT.) DEPTH (FT.) SAMPLES (FT SYMBOL DEP TH STRATUM DESCRIPTION CASING -GROUND ELEV. 267.2 Firm gray silty fine sand (SM) 20' SCREEN (25'-45' DEPTH) SAND PACK (23:-46: DEPTE) 40 40 45 45 46.01 Boring Terminated @ 46.0' 50 50 Slight seepage @ 16' and moderate seepage @ 29' while drilling. Switched to rotary wash @ 55 29' because of caving soil. 55 60 60 65 65

70

70

PROJECT: 114.5-Acre Tract, Angelina County Landfill Angelina County, Texas

JOB NO.: 164-87

DATE: 11-26-91 Rotary Wash for Well Install LOCATION: See Monitor Well Plan TYPE BORING: Dry Auger for Soil Sampling DEPTH TO WATER: MONITOR WELL DATA STANDARD PENETROMETER (BLOWS/FT.) PENETROMETER (TONS/FT2.) DEPTH (FT.) SAMPLES (FT) TOP OF CASING -SYMBOL DEPTH CONCRETE STRATUM DESCRIPTION GROUND ELEV. 272.9 Silty sand Clayey sand BENTON ITE/CEMENT Clay 5 BENTONITE 10 10 15 15 Hard laminated gray and brown (CH) clay with sand seams 20 4+ 20 22.0' Hard laminated gray and brown (CL) sandy clay with sand seams and 4+ lignite partings (17:-35: DEPTH) 25 25 SAND PACK (19'-14' DEPTH) 4+ 30.0' 30 30 Hard laminated gray and brown (CH) clay with lignite seams 4+ and pockets 4+ 35.01 35 35 Boring Terminated @ 35.0' Seepage @ 24.5' while drilling.

114.5-Acre Tract, Angelina County Landfill PROJECT:

Angelina County, Texas

JOB NO.: 164-87

DATE: 11-26-91 LOCATION: See Monitor Well Plan TYPE BORING: Dry Auger DEPTH TO WATER: MONITOR WELL DATA STANDARD PENETROMETER (BLOWS/FT.) PENETROMETER DEPTH (FT.) (F) SAMPLES SYMBOL TOP OF CASING -DEPTH CONCRETE PAD 7 STRATUM DESCRIPTION GROUND ELEV. 272.9 5 5 10 10 15 15 SET HON Hard laminated gray and brown (CH) clay with sand seams and MONITOR WELL ferrous stain 20 4+ 20 22.0' 4+ Hard laminated gray and brown (CL) sandy clay with sand seams 25 25 and lignite partings 4+ 30.0' 30 . 30 Hard laminated gray and brown 4+ clay with lightle partings 4+ 35 35 (Continued on Page 2)

PICKETT- INCORE CONCILITANTE

PROJECT: 114.5-Acre Tract, Angelina County Landfill

Angelina County, Texas

JOB NO.: 164-87

DATE: 11-26-91

		K -	用"	DEPTH TO WATER:		WELL DATA
SYMBOL	SAMPLES	STANDARD PENETROMETER (BLOWS/FT.)	PENETROMETE (TONS/FT ² .)	STRATUM DESCRIPTION GROUND ELEV. 272.9	оертн (FT.)	CASHIG 7
			4+4+	Hard laminated gray and (CH) brown clay with sand seams	PROPOSED SCREEN ZONE	Hab HOR Made
			4+	54.0' Boring Terminated @ 54.0'	> 50 < 	
				Seepage @ 24.5' while sampling. See Log of Monitor Well No. 10A for well set at that depth. Seepage and sand layers were not encountered in proposed monitor well screen depth zone of 39-49'. Therefore, Monitor Well 10B was not set.	> 60 <	

PROJECT: 114.5-Acre Tract, Angelina County Landfill Angelina County, Texas

JOB NO.: 164-87

DATE: 11-13-91 Rotary Wash for Well Install

		Dec	1.0111	tor Well Plan TYPE BORING:Dr	y Auger		
SYMBOL	SAMPLES	STANDARD PENETROMETER (BLOWS/FT.)	HAND PENETROMETER (TONS/FT ² .)	STRATUM DESCRIPTION GROUND ELEV. 272.5		DEPTH (FT.)	TOP OF CASING-
				Silty sand Sandy clay Firm brown clayey sand with sand seams	(SC)	> 5 <	TH) SEAL S
			4+	14.5' Firm gray silty fine sand 17.0' Hard laminated gray sandy clay 21.0'	(SM)	> 15 <	SAND PACK (8:-21: DEPTH) (
				Boring Terminated @ 21.0' Slight seepage @ 14.5' while drilling.		> 25 < > 30 < > 35 <	

PROJECT: 114.5-Acre Tract, Angelina County Landfill Angelina County, Texas

JOB NO.: 164-87

DATE:11-13 & 27-91

				ntor Well Plan TYPE BORING: Dr	MONITOR WELL DA
SYMBOL	SAMPLES	STANDARD PENETROMETER (BLOWS/FT.)	HAND PENETROMETEI (TONS/FT ² .)	STRATUM DESCRIPTION GROUND ELEV. 272.5	TOP OF CASH
				Silty sand	5
				Sandy clay 10.0'	10
			4+	Firm brown and gray clayey sand with seams of sand and clay	(SC)
			4+	Hard laminated gray sandy clay	(CL) 20 <
			4+		> 25 <
			4+	(Continued on Page 2)	> 35 < %

PROJECT: 114.5-Acre Tract, Angelina County Landfill Angelina County, Texas

JOB NO.: 164-87

DATE:11-13 & 27-91 LOCATION: See Monitor Well Plan TYPE BORING: Dry Auger DEPTH TO WATER: MONITOR WELL DATA (TONS/FT*) STANDARD PENETROMETER (BLOWS/FT.) DEPTH (FT.) SAMPLES (FT.) SYMBOL STRATUM DESCRIPTION DEPTH CASING -GROUND ELEV. 272.5 Hard laminated gray (CL) PROPOSED SCREEN ZONE 37.0' sandy clay SCREEN NOT SET 4+ Hard laminated gray and (CH) 40 brown clay with lignite 40 seams 4+ -with seams of lignite and sand 45 4+ 4+ 50 50 4+ 51.0' Boring Terminated @ 51.0' 55 55 Slight seepage @ 14.5' while sampling. See Log of Monitor Well No. 11A for well set at that depth. 60 Seepage and sand layers were not 60 encountered in proposed monitor well screen depth zone of 29.5'-39.5'. Therefore, Monitor Well 11B was not set. 65 65 70 70

PROJECT: 114.5-Acre Tract, Angelina County Landfill Angelina County, Texas

JOB NO.: 164-87

Rotary Wash for Well Install.

		DEPTH TO WATER:	er for Soil Sampli
SYMBOL SAMPLES STANDARD PENETROMETER (BLOWS/FT.)	HAND PENETROMETER (TONS/FT ² .)	STRATUM DESCRIPTION GROUND ELEV. 290.5	MONITOR WELL DATA TOP OF CASHIG CONCRETE PAD CONCRETE
		Silty sand Clayey sand	24 BENTONITE SEAL SEAL 4 PVC CASING 4 PVC CASING A PVC CASING
	4+ 4+ 4+	Hard laminated brown and (CH) gray clay with sand seams and ferrous stain	SAND PACK (8 - 26 · DEPTH) (10 (10 (10 (10 (10 (10 (10 (10 (10 (10
	4+	Boring Terminated @ 26.0' Slight seepage in sand layer @ 14' while drilling.	> 25

PROJECT: 114.5-Acre Tract, Angelina County Landfill Angelina County, Texas

JOB NO.: 164-87

DATE: 11-12-91

		~	~	DEPTH TO WATER:			ITOR WEL		
SYMBOL	SAMPLES	STANDARD PENETROMETER (BLOWS/FT.)	PENETROMETER (TONS/FT ² .)	STRATUM DESCRIPTION GROUND ELEV. 290.5		оертн (FT.)		CASING	-
5 4			4+	Hard laminated brown and gray clay with sand seams and ferrous stain Hard laminated gray sandy clay with sand seams	(CL)	> 5 <	SAND PACK (12:-50: DEPTH) SEAL	A' PVC CASING A' PVC CASING A' PVC CASING	BENTONITE/CEMENT

PROJECT: 114.5-Acre Tract, Angelina County Landfill Angelina County, Texas

JOB NO.: 164-87

DATE: 11-12-91

LOCATION: See Monitor Well Plan

TYPE BORING: Rotary Wash for Well Install.

Dry Auger for Soil Sampling

		oc.	ac	DEPTH TO WATER:	- 1		ÆLL DA	
SYMBOL SAMPLES STANDARD STANDARD PENETROMETE	STANDARD PENETROMETER (BLOWS/FT.)	GROUND ELEY. 290.5	STRATUM DESCRIPTION GROUND ELEV. 290.5	оертн (гт.)		ASING 7		
			2.0	Hard gray sandy clay (CL) with sand seams				
40 <				Firm gray fine sand (SP)	> 40 < > 45 <	SAND PACK (32'-50' DEPTH)		15' SCREEN (34'-49' DEPTH)
50	-			Boring Terminated @ 50.0'	> 50 <			-
55 < 60 < 70 <				Slight seepage @ 14' while drilling. See Log of Monitor Well No. 12A for details of well set at that depth. Switched to rotary wash @ 30'. Saturated sand @ 38.5'. Boring was caving below 47'.	> 55 < > 60 < > 65 < > 70 <		Ŷ	

PROJECT: 114.5-Acre Tract, Angelina County Landfill Angelina County, Texas

JOB NO.: 164-87

DATE: 11-14-91

Rotary Wash for Well Install. LOCATION: See Monitor Well Plan TYPE BORING: Dry Auger for Soil Sampling DEPTH TO WATER: MONITOR WELL DATA STANDARD PENETROMETER (BLOWS/FT.) HAND PENETROMETER (TONS/FT².) DEPTH (FT.) (H) SAMPLES TOP OF CASING -SYMBOL DEPTH CONCRETE STRATUM DESCRIPTION GROUND ELEV. 304.1 CASING PVC 5 5 1.7 Firm gray and tan clayey sand (SC) with sand seams 10 10 0.5 SAND PACK (4.-22: DEPTH) 15 SCREEN (6'-21' DEPTE) 14.0' 15 laminated gray and brown (CH) > 15 clay with sand seams and 4+ ferrous stain 20 20 22.0' Boring Terminated @ 22.0' 25 25 Slight seepage @ 11' while drilling. Switched to rotary wash @ 18' 30 30 because of caving soil. 35 35

PROJECT: 114.5-Acre Tract, Angelina County Landfill Angelina County, Texas

JOB NO.: 164-87

DATE: 11-27-91

			~	~	COT Well Plan TYPE BORING: Dry Auge		ITOR WEL	
оертн (гт.)	NOBMUS &	SAMPLES	STANDARD PENETROMETER (BLOWS/FT.)	HAND PENETROMETER (TONS/FT².)	STRATUM DESCRIPTION GROUND ELEV. 304.1	ОЕРТН (FT.)		CASING
5 < 10 < 20 <				1.7	Firm gray and tan clayey (SC) sand with sand seams 14.0' Hard laminated gray and brown (CH) clay with sand seams and ferrous stains	> 10 <	SEAL SEAL	4. PVC CASING LE C. PVC CASING BENTONITE/CENENT
25				4+		> 25 <	SAND PACK (2447' DEPTE)	2a- schen
					(Continued on Page 2)	> 35 <		

PROJECT: 114.5-Acre Tract, Angelina County Landfill Angelina County, Texas

JOB NO.: 164-87

α α	DEPTH TO WATER:	r for Soi	R WELL DA
SAMPLES SAMPLES STANDARD PENETROMETER (BLOWS/FT.) HAND PENETROMETER (TONS/FT².)	STRATUM DESCRIPTION GROUND ELEV. 304.1	ОЕРТН (FT.)	CASING-7
4+	Hard laminated gray and brown (CH) clay with sand seams		
4+	Hard laminated gray and brown (CL) sandy clay with sand seams	SAND PACK	
4+	47.0'	> 45 <	
	Slight seepage @ 11' while drilling. See Log of Monitor Well No. 13A for details of well set at that depth.	> 55 <	
	Switched to rotary wash @ 18' because of caving soil.	> 60 <	
	Saturated sand seam @ 40.5'.	> 65 <	
	**	70 <	

PROJECT: 114.5-Acre Tract, Angelina County Landfill Angelina County, Texas

JOB NO.: 164-87

DATE: 11-14-91 Rotary Wash for Well Install.

LOCATION: See Monitor Well Plan TYPE BORING: Dry Auger for Soil Sampling DEPTH TO WATER: MONITOR WELL DATA HAND PENETROMETER (TONS/FT².) STANDARD PENETROMETER (BLOWS/FT.) DEPTH (FT.) (F) TOP OF CASING SAMPLES SYMBOL DEPTH CONCRETE STRATUM DESCRIPTION GROUND ELEV. 307.3 Silty sand Clayey sand 5 10 10 Sandy clay 15 15 Firm laminated gray and tan clayey sand with sand seams 4+ and ferrous stain 20 20 21.0' 0.5 Hard laminated gray and brown (CH) 4+ SAND PACK clay with ferrous stain and 15 SCREEN (17 - 32 DEPTE) 6" layer of silty fine sand 25.0'0 21' 25 Firm laminated gray and tan (SC) 4+ clayey sand with sand and ferrous seams, and ferrous stain 30 30 4+ 33.0' Boring Terminated @ 33.0' 35 Slight seepage @ 21' while drilling. 35 Switched to rotary wash @ 22'.

PROJECT: 114.5-Acre Tract, Angelina County Landfill Angelina County, Texas

JOB NO.: 164-87

DATE: 11-15-91 Rotary Wash for Well Install. LOCATION: See Monitor Well Plan TYPE BORING: Dry Auger for Soil Sampling DEPTH TO WATER: MONITOR WELL DATA STANDARD PENETROMETER (BLOWS/FT.) HAND PENETROMETER (TONS/FT².) DEPTH (FT.) E SAMPLES TOP OF CASING SYMBOL CONCRETE PAD 7 STRATUM DESCRIPTION DEPTH GROUND ELEV. 310.5 Silty sand Clayey sand 5 5 10 10 15 15 20 20 25 25 Firm gray clayey sand (SC) 3.7 30 -becomes firm gray and tan 30 clayey sand with sand seams 4+ and ferrous stains 35 1.7 -with layer of silty sand 35

(Continued on Page 2)

PROJECT: 114.5-Acre Tract, Angelina County Landfill Angelina County, Texas

JOB NO .: 164-87

DATE: 11-15-91 Rotary Wash for Well Install. TYPE BORING: Dry Auger for Soil Sampling LOCATION: See Monitor Well Plan DEPTH TO WATER: MONITOR WELL DATA (TONS/FT².) STANDARD PENETROMETER (BLOWS/FT.) DEPTH (FT.) SAMPLES (H) SYMBOL STRATUM DESCRIPTION CASING DEPTH GROUND ELEV. 310.5 Firm gray and tan clayey sand (SC) 4+ with ferrous stain and seams BENTORITE 40 of lignite and sandy clay 40 BENTONITE/CEMENT 45 46.0' Firm dark gray silty fine (SM) sand with clay seams 0.5 50 50 0.5 53.01 Hard laminated gray and brown (CL) 4+ SAND PACK (46:-64: DEPTH) (48.-63. DEPTH) sandy clay with sand seams 55 55 4+ 60 60 4+ 64.01 65 Boring Terminated @ 64.0' 65 Moderate seepage @ 33' while drilling. See Log of Monitor Well No. 15B for details of well set @ that depth. 70 Moderate seepage @ 49' while 70 drilling. Switched to rotary wash 50'

DICKETT HOOSE

PROJECT: 114.5-Acre Tract, Angelina County Landfill

JOB NO.: 164-87

Angelina County, Texas DATE: 11-15-91 Rotary Wash for Well Install. LOCATION: See Monitor Well Plan TYPE BORING: Dry Auger for Soil Sampling DEPTH TO WATER: MONITOR WELL DATA STANDARD PENETROMETER (BLOWS/FT.) PENETROMETER (TONS/FT2.) DEPTH (FT.) SAMPLES E TOP OF CASING SYMBOL DEPTH STRATUM DESCRIPTION CONCRETE PAD -GROUND ELEV. 310.5 Silty sand Clayey sand 5 5 BENTONITE/CEMENT 10 10 15 15 BENTONITE 20 20 25 25 Firm gray clayey sand 3.7 (SC) SAND PACK 30 30 (26'-41' DEPTH) -becomes firm gray and tan 4+ clayey sand with sand seams and ferrous stains -with layer of silty sand 1.7 35 35

(Continued on Page 2)

PROJECT: 114.5-Acre Tract, Angelina County Landfill Angelina County, Texas

JOB NO.: 164-87

DATE: 11-15-91

Rotary Wash for Well Install.

TYPE BORING: Dry Auger for Soil Sampling LOCATION: See Monitor Well Plan DEPTH TO WATER: HAND PENETROMETER (TONS/FT².) MONITOR WELL DATA STANDARD PENETROMETER (BLOWS/FT.) DEPTH (FT.) SAMPLES (FT.) SYMBOL DEPTH STRATUM DESCRIPTION CASING -GROUND ELEV. 310.05 (26'-41' DEPTH) SAND PACK (24'-42' DEPTH) Firm gray and tan clayey sand (SC) with ferrous stain and seams SAND 4+ of lignite and sandy clay 40 40 42.0' Boring Terminated @ 42.0' 45 45 Moderate seepage @ 33' while 50 50 drilling. 55 55 60 60 65 65 70 70

Page 2 of 2

LOG OF MONITOR WELL NO. 16

PROJECT: 114.5-Acre Tract, Angelina County Landfill Angelina County, Texas

JOB NO.: 164-87

	~	DEPTH TO WATER:		NITOR WELL DATA
SYMBOL SAMPLES STANDARD PENETROMETER (BLOWS/FT.)	PENETROMETER (TONS/FT ² .)	STRATUM DESCRIPTION GROUND ELEV. 270.3	DEPTH (FT.)	CASING 7
	4+	Hard laminated gray clay (CH) with silt seams 42.0'	> 40 <	SAND PACK (3447' DEPTE) [[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[
	4+	Hard laminated gray sandy (CL) clay with sand seams	> 45 <	(34)
		Slight seepage @ 12' and heavy seepage @ 42' while drilling. Set monitor well @ indicated depth.	> 50 < > 55 < > 60 <	

DICKETT-

Page 1 of 2

LOG OF MONITOR WELL NO. 17

PROJECT: 114.5-Acre Tract, Angelina County Landfill

Angelina County, Texas

JOB NO.: 164-87

DATE: 4-1-92 LOCATION: See Monitor Well Plan TYPE BORING: 6" I.D. Hollow Stem DEPTH TO WATER: MONITOR WELL DATA STANDARD PENETROMETER (BLOWS/FT.) PENETROMETER (TONS/FT².) DEPTH (FT.) (F) TOP OF CASING SAMPLES SYMBOL DEPTH (CONCRETE PAD 7 P STRATUM DESCRIPTION GROUND ELEV. 281.0 Silty sand 5 5 Clayey sand 10 10 BENTONITE/CEMENT GROUT Sandy clay 15 15 20 20 25 25 30 30 Hard laminated gray clay (CH) with silt seams 4+ 35 35

(continued on Page 2)

114.5-Acre Tract, Angelina County Landfill PROJECT:

Angelina County, Texas

JOB NO.: 164-87 DATE: 4-1-92 LOCATION: See Monitor Well Plan TYPE BORING: 6" I.D. Hollow Stem DEPTH TO WATER: STANDARD
PENETROMETER
(BLOWS/FT.) MONITOR WELL DATA HAND PENETROMETER (TONS/FT².) DEPTH (FT.) SAMPLES E SYMBOL DEPTH STRATUM DESCRIPTION GROUND ELEV. 281.0 Hard laminated gray clay (CH) with silt seams 38.0' 4+ Firm laminated gray (SC) 40 clayey sand with 40 sand seams (36:-49: DEPTE) 42.0' Hard laminated gray clay (CH) 4+ with sand seams 45 45 49.0' 50 Boring Terminated @ 49.0' 50 Moderate seepage @ 26' and slight 55 seepage @ 39' while drilling. 55 Set monitor well @ indicated depth. 60 60 65 65 70 70

8(2)

Please use black ink. Send original copy by

3 P

....

State of Tayar

certified mail to the Texas Department of Water Resource P. O. Box 13087 Austin, Texas 78711		ATER W			PORT ge Notice on Reverse Side	Texas Water Well Driller P. O. Box 13087 Austin, Texas 78711	s Board
21 LOCATION OF WELL:	(ame)	_ Address .	130)5 C	rooked Creek Lu	fkin, TX 759	01
county Angelina		_ miles in _	IN.	E., S.W	., etc.) direction from	Lux KIN	
Driller must complete the legal descrip with distance and direction from two it tion or survey lines, or he must locate well on an official Quarter- or Half-Sea General Highway Map and attach the n	tion to the right ntersecting sec- and identify the le Texas County nap to this form.	Legal des Section Abstrac Distance	No No No. a and	on: directio	Block NoT	ownship	
3) TYPE OF WORK (Check):		See attac	hed m	ep.			_
New Well Deepening	4) PROPOSED USE (Chec				5) ORILLING METHOD (Check		
☐ Reconditioning ☐ Plugging	☐ Irrigation ☐ Test Wel	l 🗆 Public S	upply		Mud Rotary Air Hamme	Driven Bored	
6) WELL LOG:	DIAMETER OF HO		7)		☐ Air Rotary ☐ Cable Tool HOLE COMPLETION:	Jetted Other	
Date drilled _ 2-3-87	63/4 Surface	209		K) Grav	n Hole Straight Wall rel Packed Other		
				II G	ravel Packed give interval from	140 ft. to 30	<u>Ĺ</u> 11.
(ft.) (ft.)	Description and color of form material	nation	8)	CASIN	G, BLANK PIPE, AND WELL SC	REEN DATA:	
18' 155' B	ixed Clay lue Clay		Dis. (in.)	New or Used	Steel, Plastic, etc. Perf., Stotted, etc. Screen Mgf., if commercial	Setting (ft.)	Gage Casing
1601	ite Sand		4	N	Sed. 40 Prc	From To 7-1 . 196	Screen
1071	lue Clay ite Sand					206 209	
197' 199' B	lue Clay		4	N	SCD. 40 PX SOTTE		
	ood Sand lue Clay				Jan. 40 / 06 5/6/18	196-206	1020
			10)	SURF.	ed by	319.44(c))	
				WATE! Stati	R LEVEL: c levelft. below land sien flowgpm.		<u> </u>
			12)	PACKE	RS: Type	Depth	
(Use reverse side	e if necessary)		0	TYPE I Turbin Other	e 🗆 Jet 💆 Submers		,
Did you knowingly penetpate any at water? Yes No If yes, submit "REPORT OF UND Type of water? Use the character of water?	SIRVATE WATERVE			Type T Yield:	gpm withf	☐ Jetted ☐ Estimated	
I here by certify that this well well well with this well well with the	ves ALIG 1 10 1987 or mend that failure to complete		6-20/0100		ch and all of the statements herein In the log(s) being returned for co ense No. 368	are true to the best of my mpletion and resubmittal.	
DDRESS Rt. 7, BOX	2 4670	Lufk	in		Texas	75901	
Signed) Koy (Licensed Was	suebner	(Signer			(State)	(Zip)	
lease attach electric log, chemical analysi				(A		For TDWR use poly Vell No. 37-43-6	
						and ou web	-

end original copy by sertified mail to the exas Water Development Board . O. Box 13087 satin, Texas 78711		of Texas		Well No	
L) OWNER: And ol	ina County			-	
Person having well drilled Sanit	ary Landfill	Address Co	ngelina Coun		6 4 6
	(Nese)	(Str	reet or RFD)	Lufkin (City)	(State)
Landowner Owens-Illinois, (Name)	Inc. Western Woo	dlandadress Ol	Ld Mill Road	Lufkin (City)	
LOCATION OF WELL: County Angelina	,	les in South.	direction from		
Locate by sketch map showing landmark.	. roads, creeks	(Hene) Jekel C	211.		(Town!
hivay number, stc.*	,	Labor	location with distant actions or survey lin	nes.	ons from
	North	Block		Survey	* 2
	1	Abstract Ho	<u>, d</u>	18 To 18 To 18	- : ¢
(Use reverse side if necessary	7)	(HW + HE + SH	k SEk) of Section_	٠	,e
TYPE OF WORK (Check): New Well X Deepening	4)PROPOSED USE (Check Domestic X Indus		5)TYPE OF WE	ELL (Check):	
Reconditioning Plugging		trial Hunicipal	Rotary X	Driven	Dug
WELL LOG: .	Icrigation Test	Well Other	Cable	Jetted	Bored
From To . Descripti	measurements made from on and color of	O ft.abo	vell 348 ve ground level. New X Stee		
0 26 Yellow Clay		Cemented from	0	te te S	iol.
26 76 Dark Gray Sl		Diameter			<u> </u>
76 96 Sand	7-7-2	(inches)	From (ft.)	To (ft.)	Gage
96 113 Dark Gray Sh		1, 11		20lı	
The state of the s	187.9			2014	-Berrito-
Tay Mark					
THE GLAN ST	ale	10) SCREEN: Sta	inless Steel	The desired	
w budge		Perforated	212088 50863		
TOUR TOUR		Diameter		Slotted X	
61 162 Dark Gray Sh	ale	(Inches)	Settin From (ft.)	g To (ft.)	Slot
62 235 Sand		2"	215	235	10
35 237 Dark Gray Sh	ala	2"	302	307	12
(Use reverse side if nec	essary) (over)	2"	31h	319	
		11) WELL TESTS:	144	319	12
Straight wall X Gravel packed Under reamed Open Hole	Other	English	ort made? Yes	ho If ye	s, by whom? English
WATER LEVEL:		Yleld: 12	spm vith_31	ft. drawdown	after 8 hrs
Static level 57 ft. below land	surface Date 2/19/75		gpm with		
Artesian pressurelbs. per squar	re Inch Date		gp=		
Depth to pump bowls, cylinder, jet, et	te., 1831 ft.	Temperature o			
below land surface.		12) WATER QUALITY:			
		Was 4 chemics	l analysis made?	Yes X	No
		Did any atrac	a contain undestrabl	la vater? Y	es No X
		Type of water	2	depth of strata	
I hereby certi	ify that this well was drill	ed by me (or under m			
Reagan English	a cue acacements Hereth 418	true to the best of	my knowledge and be	lief.	
(Type or Print)	v	eter Well Drillers R	egistration No. 76		
DRESS 2103 North Raguet	Luft	in	Te	X88 75	901
(O) AI OI KI'D)		CO I		(State)	
med) League &	1:1		0.201225		
igned) Meagure Dry (Water Well pptile	list	Englis	h Drilling (Company Nam	20.	

.)

**

Section 4 Proof of Submittal Of Permit Modification Application Fee

March 18, 2008

MC-214
Ms. Jacqueline Mgebroff
Revenue Section
Office of Administrative Services
Texas Commission on Environmental Quality
P.O. Box 13087
Austin, TX 78711-3087

Re:

Application Fee Submittal for the Permit Modification for Changes to the Groundwater Monitoring System Design Angelina County Waste Management Center MSW Permit No. 2105A Angelina County, Texas

Dear Ms. Mgebroff:

On behalf of Angelina County, and as required by 30 TAC §330.59(h)(1), we submit the attached application fee (\$150.00) for the permit modification submitted for changes to the groundwater monitoring system for Angelina County Waste Management Center, MSW Permit No. 2105A, Angelina County, Texas.

If you have any questions regarding this information, please feel free to contact me at (936) 568-9451 or by e-mail at tscarborough@hydrex-inc.com.

Sincerely,

Hydrex Environmental, Inc.

Leonell N. Scarborough, P.G.

Hydrogeologist

cc: MC 124

Mr. Jeff Davis, Team Leader MSW Permits Section Office of Waste Management, Permits Division Texas Commission on Environmental Quality P. O. Box 13087 Austin, TX 78711-3087

Mr. Chris Fitzgerald Landfill Manager Angelina County Waste Management Center P.O. Box 1862 Lufkin, TX 75902-1862

14409 REGIONS BANK TEXAS HYDREX ENVIRONMENTAL, INC. 1120 NW STALLINGS DRIVE NACOGDOCHES, TX 75964-3428 (936) 568-9451 88-78-1119 3/19/2008 Texas Commission on Environmental Quality PAY TO THE **150.00 ORDER OF: DOLLARS Texas Commission on Environmental Quality HYDREX ENVIRONMENTAL, INC. 0 Revenue Section Office of Admin, Service PO Box 13087 Austin, TX 78711-3087 мемо Subchapter J GW Mod, App Fee

"014409" ::111900785: 84 1400 9700"

HYDREX ENVIRONMENTAL, INC.

14409

Texas Commission on Environmental Quality

3/19/2008 ACWMC (MSW # 2105A)

150.00

Checking Acct - Regio , Subchapter J GW Mod, App Fee

150.00